شناسایی نشانگرهای آگاهی‌بخش SSR و EST-SSR مرتبط با مقاومت به زنگ قهوه‌ای در ژنوتیپ‌های گیاه مرتعی Aegilops tauschii Coss در مرحله گیاهچه‌ای و گیاه کامل

نوع مقاله : مقاله علمی - پژوهشی

نویسندگان

1 دانشجوی دکتری ژنتیک مولکولی و به‌نژادی گیاهی دانشگاه علوم کشاورزی و منابع طبیعی گرگان

2 استادیار گروه اصلاح نباتات و بیوتکنولوژی دانشکده تولید گیاهی دانشگاه کشاورزی و علوم منابع طبیعی گرگان

3 دانشیار گروه زیست‌فناوری منابع طبیعی، مؤسسه تحقیقات جنگل‌ها و مراتع کشور، سازمان تحقیقات، آموزش و ترویج کشاورزی

4 دانشیار گروه اصلاح نباتات و بیوتکنولوژی دانشکده تولید گیاهی دانشگاه کشاورزی و علوم منابع طبیعی گرگان

5 استادیار بخش تحقیقات غلات، مؤسسه تحقیقات اصلاح و تهیه نهال و بذر، سازمان تحقیقات، آموزش و ترویج کشاورزی، کرج، ایران

10.22092/ijrfpbgr.2022.357703.1410

چکیده

گونهAegilops tauschii ، گیاهی است یکساله و دیپلوئید (2n = 2x = 14, DD) که به‌صورت خودرو در دامنه ارتفاعات و یا دشت‌های نزدیک به سواحل دریاهای غیرآزاد، از ترکیه تا چین رویش دارد. از آنجا که نواحی شمالی ایران به‌عنوان یکی از مهمترین مراکز پیدایش و تنوع این گونه مطرح است، شناسایی منابع مقاومت به زنگ قهوه‌ای (برگ) گندم در این مناطق بسیار اهمیت دارد. در این پژوهش، مقاومت گونه مرتعی آژیلوپس تائوشی (Aegilops tauschii Coss.) نسبت به شش جدایه مختلف عامل بیماری­ زنگ قهوه ­ای در مرحله گیاهچه­ ای و گیاه کامل ارزیابی شد. برای شناسایی نشانگرهای مرتبط با مقاومت گیاهچه به جدایه­ های مختلف و مقاومت گیاه کامل در مزرعه، از نشانگرهای SSR و EST-SSR که پوشش مناسبی روی ژنوم D گندم داشتند، استفاده شد. تجزیه ساختار ژنتیکی جمعیت، نشان داد که یکصد ژنوتیپ مورد ارزیابی در دو زیرجمعیت متمایز قرار گرفتند. پس از محاسبه ماتریس ضرایب ساختار ژنتیکی و همچنین خویشاوندی در جمعیت (Kinship)، تحلیل ارتباط نشانگر- صفت با استفاده از مدل‌های خطی عمومی­ و مختلط انجام شد. قطعات تکثیری آغازگرهای ریزماهواره Xgwm2، Xgwm44 و  Xgwm30 که به‌ترتیب بر روی کروموزوم­های 3D، 7D و 2D و همچنین آغازگرهای SWES186 و SWEW92  از  نشانگرهای EST-SSR که به‌ترتیب بر روی کروموزوم‌های 2D و 7D قرار داشت دارای ارتباط معنی­دار با سطح مقاومت به بیماری زنگ  (با ضریب تبیین بالا) بود. با توجه به ارتباط این نشانگرها با مقاومت اغلب جدایه­ های مطالعه شده، می­توان نتیجه گرفت که به‌عنوان نشانگرهای آگاهی ­بخش، ظرفیت بالایی در گزینش ژنومی و غربالگری سریع ژنوتیپ­ ها به کمک نشانگر دارند.

کلیدواژه‌ها

موضوعات


Abdurakhmonov, I.Y., Abdukarimov, A., 2008. Application of association mapping to understanding the genetic diversity of plant germplasm resources: International Journal of Plant Genomics 5: 1-18.
Ataiee, R., Mohammadi, W., Talei, A., and M. R., Naghavi. 2013. Communication mapping of root traits in barley, Iranian Crop Sciences, 347-357. (In Persian)
 Anwar, M.J., Javad, M. and Jamil, M.W., Habib, I., Nazir, N., Rehman, S., Iqbal. M.Z., Kamran, M., Ehetisham, ul. and haq, M. 2019.  Response of wheat genotypes for resistance against rust (Puccinia titicina Eriks.) under field conditions: Plant Protection. 3 (1): 35-39.
Autrique, E., Singh, RP., Tanksley, S.D., Sorrells, M.E. 1995. Molecular markers for four leaf rust resistance genes introgressed into wheat from wild relatives. Genome 38:75-83.
Bamdadian, A. 1993. Evaluation of physiological race of rusts of grass and their modification in Iran: Iranian Research Institute of Plant Protection Evin  Iran  10p. (In Persian)
Bradbury, P. 2007. TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics. 23(19) 2633-2635.
Braulio, J.S., Cloutier, S. 2012. Association mapping in plant genomes: Genetic Diversity in Plants. Intech Press. 29-55.
Brbaklic, L., Trkulja, D., Kondic-spika, A., Treskic, S., Kobiljski, B. 2013. detection of QTLs for important agronomical traitsin hexaploid wheat using association analysis. Plant Breed  49 (1): 1–8.
Breseghello, F., M.E., Sorrells., 2007. QTL analysis of kernel size and shape in two hexaploidy wheat mapping populations : Field Crops Research  101: 172-179.
Buckler, E.S., Thornsberry, J.M. 2002. Plant molecular diversity and applications to genomics: Current opinion in plant biology  5: 107-111.
Cloutier, S., McCallum, B.D., Loutre, C., Banks, T.W., Wicker, T., Feuillet, C., Keller, B., Jordan. M.C. 2007. Leaf rust resistance gene Lr1, isolated from bread wheat (Triticum aestivum L.) is a member of the large psr567 gene family. Plant Molecular Biology 65:93-106.
Dadrezaei, S., Afshari, F., Patpour, M., 2015. Evaluation of phenotypic resistance to rusts in some Iranian wheat genotypes in greenhouse and field conditions: Seed and Plant Improvement  31(3): 531-546. (In Persian)
Dyck, P.L. 1987. The association of a gene for leaf rust resistance with the chromosome 7D suppressor of stem rust resistance in common wheat. Genome 29:467-469.
El-Orabey, W.M., Hamwieh, A., Ahmed, S.M. 2019. Molecular markers and phenotypic characterization of adult plant resistance genes Lr 34, Lr 46, Lr 67 and Lr 68 and their association with partial resistance to leaf rust in wheat: Journal of genetics 98(3): 1-12.
El-Orbey, W.M., Hamwieh, A., Ahmed, S.M. 2019. Molecular markers and phenotypic characterization of adult plantresistance genes Lr34, Lr46, Lr67 and Lr68 and their association with partial resistance to leaf rust in wheat:  Journal of Genetics 98:82.
Esfandiari, E. 1948. Troisième liste des fungi ramassés en Iran:  Applied Entomology and Phytopathology  8: 1-15.
 Evanno G. 2005. Detecting the number of clusters of individuals using the software structure: a simulation study Molecular Ecology. 14: 2611–2620.
Feuillet, C., Messmer, M., Schachermayr, G., Keller, B. 1995. Genetic and physical characterization of the Lr1 leaf rust resistance locus in wheat (Triticum aestivum L.). Molecular Genetics and Genomics 248: 553-562.
Flint-Garcia, S.A., Thornsberry, J.M., Ivon, B. 2003. Structure of linkage disequilibrium in plants: Annual Review of Plant Biology.  54: 357-374.
Gao L, Kathryn T, Shiaoman  C, Kolmer  J, Anderson  J. 2016.  Genome-wide association study of seedling and adult plant leaf rust resistance in elite spring wheat breeding lines. Plos one. 11(2): 1-25.
Huang, L., Gill, B.S. 2001. An RGA-like marker detects all known Lr21 leaf rust resistance gene family members in Aegilops tauschii and wheat. Theoretical and Applied Genetics 6-7:1007-1013.
Huerta-Espino, J., Singh, R., Crespo-Herrera, L.A.,Villaseñor-Mir, H.E., Rodriguez-Garcia, M.F., Dreisigacker, S., Barcenas-Santana, D., Lagudah, E. 2020. Adult plant slow rusting genes confer high levels of resistance to rusts in bread wheat cultivars from Mexico: Frontiers in Plant Science 11: 824.
Huerta-Espino, J., Singh, R.P., Germanm, S., McCallumm, B.D., Park, R.F., Chen, W.Q., Bhardwaj, S.C. 2011.  Global status of wheat leaf rust caused by Puccinia triticina:  Euphytica 179: 143–160.
Krattinger, S.G., Lagudah, E.S., Spielmeyer, W., Singh, R.P., Huerta-Espino, J., McFadden, H., Bossolini, E., Selter, L.L., Keller, B. 2009. A putative ABC transporter confers durable resistance to multiple fungal pathogens in wheat. Science 323:1360-1363.
Lagudah, E.S., McFadden, H., Singh, R.P., Huerta-Espino, J., Bariana, H.S., Spielmeyer, W. 2006. Molecular genetic characterisation of the Lr34/Yr18 slow rusting resistance gene region in wheat. Theoretical and Applied Genetic 114:21–30.
Lagudah, E.S., Krattinger, S.G., Herrera-Foessel, S. 2009. Gene-specific markers for the wheat gene Lr34/Yr18/Pm38 which confers resistance to multiple fungal pathogens. Theoretical and Applied Genetics 119:889-898.
Lee, A., Trinh, A.c., Lee, W.J., Kim. m., Lee. H., Pathiraja. D., Choi. I., Chung. N., Choi. C., Lee. B.C., Lee. H. 2020. Characterization of two leaf rust-resistant Aegilops tauschii accessions for the synthetic wheat development. l. Applied Biological Chemistry. 63(13): 1-14.  
McIntosh, R.A., Welling, C.R., Park, R.F. 1995. Wheat Rusts: An Atlas of Resistance Genes: CSIRO publications, Victoria, Australia. PP:201.
Khorami-fard, T; Mehrabi, A. A.,  Arminian, A., Fazeli, A. 2017. Genetic diversity structure of Aegilops crassa accessions revealed by genomic ISSR markers. Iranian Journal of Rangelands and Forests Plant Breeding and Genetic. 25(1), 111-122. (In Persian)
Neelam, K., Brown-Guedira, G., Huang, L., 2013. Development and validation of a breeder-friendly KASPar marker for wheat leaf rust resistance locus Lr21. Molecular Breeding 31:233-237.
Noori, A., Mehrabi, A., Safari, H. 2015. Morphological evaluation and drought tolerance indices of Aegilops cylindrica accessions in Ilam. Iranian Journal of Rangelands and Forests Plant Breeding and Genetic.  23(2): 259-276. (In Persian)
Peterson, G., Seberg, O., Yde, M., Berthelsen, K.  2006. Phylogenetic relation of Triticum and Aegilops evidence for the origin of the A, B and D genomes of common wheat (Triticum aestivum): Molecular Phylogenetic and Evolution.  39:70–82.
Peterson, R.F., Campbell, A.B., Hannah, A.E. 1948. A diagrammatic scale for estimating rust intensity on leaves and stems of cereals: Canadian journal of research 26(5): 496-500.‏
Pour-Aboughadareh, A. R., Moghaddam, M.,  Alavikia, S., Mehrabi, A. A. 2016. Assessing heritability of agro-morphological characters and relationship between genetic diversity with geographical factors in Einkorn wild wheat populations collected from West and Northwest of Iran. Iranian Journal of Rangelands and Forests Plant Breeding and Genetic. 24(2):  287-304. (In Persian)
Prins, R., Groenewald, J.Z., Marais, G.F., Snape, J.W., Koebner, R.M.D. 2001. AFLP and STS tagging of Lr19, a gene conferring resistance to leaf rust in wheat. Theoretical and Applied Genetics103:618-624.
Roelfs, A.P. 1978. Estimated losses caused by rust in small grain cereal in the United States: Miscellaneous Publication USDA: 1- 85.
Saghai-Maroof, M.A., Soliman, K.M., Jorgensen, R.A., Allard, R.W., 1984. PNAS  81 (24) : 8014-8018.
Singh N., Wu S., Tiwari V.,  Sehgal S., Raupp J., Wilson D., Abbasov M., Gill B., Poland J., 2019. Genomic Analysis Confirms Population Structure and Identifies Inter-Lineage Hybrids in Aegilops tauschii. Front. Plant Sci. 10(9) 1-13.
Singh, A., Pallavi, J.K., Gupta, P., Prabhu, K.V., 2011. Identification of microsatellite markers linked to leaf rust adult plant resistance (APR) gene Lr48 in wheat. Plant Breeding 130:31-34.
Singh, N., Wu, S., Tiwari, V., Sehgal, S., Raupp, J., Wilson, D., Abbasov, M., Gill, B., Poland, J., 2019. Genomic Analysis Confirms Population Structure and Identifies Inter-Lineage Hybrids in Aegilops tauschii. Frontiers in Plant Science. 10(9) 1-13.
Spataro, G., Tiranti, B., Arcaleni, P. 2011. Genetic diversity and structure of a worldwide collection of Phaseolus coccineus L. Theoretical and Applied Genetics. 122: 1281–1291.
Stich, B., Melchinger, A. E. 2010. An introduction to association mapping in plants: CAB Reviews. 5: 1-9.
Talbert, L.E., Blake, N.K., Chee, P.W., Blake, T.K., Magyar, G.M. 1994. Evaluation of "sequence-tagged-site" PCR products as molecular markers in wheat. Theoretical and Applied Genetics 87:789-794. 
Thabet, M., Najeeb, M.A. 2017. Impact of Wheat Leaf Rust Severity on Grain Yield Losses in Relation to Host Resistance for Some Egyptian Wheat Cultivars: Middle East Journal of Agriculture. 6 (4): 1501-1509.
Torabi, M., Nazari, K., Afshari, F. 2001. Genetic of pathogenicicty of Puccinia recondita F.Sp. Tritici, the causal agent of leaf rust of wheat: Iranian Journal Agricultral Science, 32(3): 625-635. (In Persian)
Ulaszewski, W., Tomasz, M. 2020. Aegilops Species for the Improvement of the Leaf and Stripe Rust Resistance in Cultivated Triticale (×Triticosecale Wittmack). Agronomy. 1991(10): 1-8.
Vanderplank, J.E., (1963)  Plant Disease. Epidemics and Control: Accademic Press New York.  PP: 349.
William, M., Singh, R.P., Huerta-Espino, J., Ortiz Islas, S., Hoisington, D. 2003. Molecular marker mapping of leaf rust resistance gene Lr46 and its association with stripe rust resistance gene Yr29 in wheat. Phytopathology 93:153-159.
Witcombe, J. R. 1983. A Guide to the Species of Aegilops L.: Their Taxonomy, Morphology, and Distribution. International Board for Plant Genetic Resources (IPGRI), Rome, Italy. PP: 77.
Yu, J., Buckler, E.S. 2006. Genetic association mapping and genome organization of maize: Current Opinion in Biotechnology. 17: 155-160.
Zhang, P., Li, X., Gebrewahid, T.W., Liu, H., Xia, X., He, Z., Li, Z., Liu, D. 2019. QTL mapping of adult-plant resistance to leaf and stripe rust in wheat cross SW 8588/Thatcher using the wheat 55K SNP array:  Plant disease 103(12): 3041-3049.
Zhang, W., Dubcovsky, J. 2008. Association between allelic variation at the Phytoene synthase 1 gene and yellow pigment content in the wheat grain. Theoretical and Applied Genetics 116: 635-645.