بررسی اثر غلطت آنتی‌اکسیدان‌های مختلف بر‌کاهش قهوه‌ای شدن کالوس و تولید ذی‌توده آن در دو گونه از شیرین‌بیان Glycyrrhiza glabra و G. uralensis

نوع مقاله : مقاله علمی - پژوهشی

نویسندگان

1 دانشجوی دکترای اصلاح نباتات-ژنتیک مولکولی، گروه زراعت و اصلاح نباتات، دانشکده کشاورزی، دانشگاه تهران

2 استاد، گروه زراعت و اصلاح نباتات، دانشکده کشاورزی، دانشگاه تهران

3 دانشیار، گروه بیوتکنولوژی کشاورزی، دانشکده کشاورزی، دانشگاه تهران

4 استاد، گروه اصلاح نباتات و بیوتکنولوژی، دانشگاه زابل، زابل

چکیده

DOR: 98.1000/1735-0891.1398.27.131.53.1.1576.115
ریشه‌ها و استولن‌های شیرین‌بیان یکی از مهمترین داروهای خام را در دنیا تشکیل می‌دهند و محتوای مقادیر زیادی از ماده مؤثر گلیسیریزین، که یک نوع تریترپنوئید ساپونین است، می‌باشند. کشت بافت و تولید کالوس در شیرین‌بیان پیش‌نیاز مطالعات بررسی متابولیت‌های‌ ثانویه و ترانسفورماسیون سلولی در این گیاه ‌می‌باشد. به‌‌منظور تأثیر آنتی‌اکسیدان‌ها در کاهش قهوه‏ای شدن و رشد کالوس در دو گونه از شیرین‌بیان Glycyrrhiza glabra و G. uralensisاز اسید اسکوربیک و PVP (پلی‌ونیل پیرولیدین) در چهار سطح مختلف استفاده شد. همچنین به‌منظور‌ تأثیر این آنتی‌اکسیدان‌‏ها در شاخص رشد کالوس، اقدام به کشت سوسپانسیون سلولی در هر دو گونه گردید. برای تولید کالوس از هیپوکوتیل گیاهچه‌های دو هفته‏‌ای و هورمون‌های NAA (نفتالین استیک اسید) به غلظت نیم میلی‌گرم در لیتر و BA (بنزیل آمین) به غلظت دو میلی‌گرم در لیتر به همراه تیمارهای آنتی‌اکسیدان‌های اسید اسکوربیک و PVP در غلظت‌های مختلف در قالب دو آزمایش فاکتوریل جداگانه بر پایه طرح‌ کاملاً ‌تصادفی استفاده شد. نتایج نشان داد در واکشت‌های متوالی میزان 1200 میلی‌گرم در لیتر PVP در هر دو گونه، کمترین باززایی، نکروزه و بیشترین میزان کالوس را دارا بود. درحالی‌که در کشت سوسپانسیون سلولی با افزایش غلظت PVP شاخص رشد کالوس کاهش یافته و تیمار PVP با غلظت 1200 میلی‌گرم در لیتر در هر دو گونه کمترین شاخص رشد کالوس را داشت، که می‌تواند به دلیل جذب هورمون‌ها (NAA و BA) توسط هورمون PVP و کاهش غلظت هورمون در محیط باشد. تیمار اسید اسکوربیک به‌ترتیب با غلظت‌های 80 و 100 میلی‌گرم در لیتر در هر دو گونه بیشترین شاخص رشد کالوس را داشت و برای کشت سوسپانسیون سلولی توصیه گردید.

کلیدواژه‌ها

موضوعات


-  Amagaya, S., Sugishita, E., Ogihara, Y., Ogawa, S., Okada, K., Aizawa, T., 1984. Comparative studies of the stereoisomers of glycirrhithic acid on anti-inflamatory activities. Journal Pharmacobio- Dynamicsو 7 (12): 923-928.
-  Christie, S., Walker, A.F., Lewith Flavonoids, G.T., 2001. A new direction for the treatment of fluid retention. Phytother Research, 15: 467-475.
-  Cördük, N., Aki, C., 2011. Inhibition of browning problem during micropropagation of Sideritis trojana, an endemic medicinal herb of Turkey. Romanian Biotechnology Letter, 16: 6760–6765.
-  Ding, C., Chachin, K., Ueda, Y., 2002. Inhibition of loquat enzymatic browning by sulfhydryl compounds. Food Chemistry, 76:213-218.
-  Ghahraman A (1999) Basic Botany: Anatomy and Morphology, Vol. 1. University of Tehran        Press. pp: 539.
-  Hosseinpanahi, S., Majdi, M., Mirzaghaderi, Gh., (2016). Effects of growth regulators on in vitro callogenesis and regeneration of black cumin (Nigella sativa). Iranian Journal of Rangelands and Forests Plant Breeding and Genetic Research, 24 (2): 232-242 (In Persian).
-  Hosseini,B.,  Bighamat, A., (2016). Effects of different concentrations of growth regulators and explants type on callus induction, embryogenesis and shoot regeneration of Origanum vulgare ssp. Gracile. Iranian Journal of Rangelands and Forests Plant Breeding and Genetic Research, 24 (2): 265-276 (In Persian).
-  Jain, S., Kharya, M.D., Nayak, S., Barik, R., 2008. Effect of antioxidants on callus browning of Glycyrrhiza glabra. Journal of Natural Remedies, 8(1): 44 - 47.
-  Khosroushahi, A., Naderi-Manesh, H., Toft Simonsen, H., 2011. Effect of Antioxidants and Carbohydrates in Callus Cultures of Taxus brevifolia: Evaluation of Browning, Callus Growth, Total Phenolics and Paclitaxel Production. BioImpacts, 1(1): 37-45.
-  Khosravinia, S., Ziaratnia, S.M., Bagheri, A., Marathi, S.H., 2013. Optimization of suitable culture medium and hormone combinations for callus induction and cell suspension culture establishment of Bunium persicum (Boiss.) B. Fedtsch. Iranian Journal of Rangelands and Forests Plant Breeding and Genetic Research, 21 (2): 163-173(In Persian).
-  Layer, O., 2003. Mechanism in plant development. Oxford, UK: Blackwell Science.
-  Lopez, J., Uribe, E., Vega-Galvez, A., 2010. Effect of air temperature on drying kinetics, vitamin C, antioxidant activity, total phenolic content, non-enzymatic browning and firmness of blueberries variety O’ Neil. Food Bioprocess Technology, 3:772-777.
-  Ogita, S., 2005. Callus and cell suspension culture of bamboo plant Phyllostachys nigra. Plant Biotechnology, 22(2): 119-125.
-  Parsaeimehr, A., Mousavi, B., 2009. Producing Friable Callus for suspension Culture in Glycyrrhiza glabra. Advances in Environmental Biology, 3(2): 125-128.
-  Pick Kiong, A.N., Shu Thing, Y., Azlan Gansau, J., Sobri, H., 2008. Induction and multiplication of callus from endosperm of Cycas revolute. African Journal of Biotechnology, 7 (23): 4279-4284.
-  SAS, Institute., 2010. SAS Users Guide; SAS/STAT, Version 9. 4. SAS Inst. Inc. Cary (NC, USA).
-  Seki, H., Sawai, S., Ohyama, K., Mizutani, M., Ohnishi, T., 2011. Triterpene Functional Genomics in Licorice for Identification of CYP72A154 Involved in the Biosynthesis of Glycyrrhizin. The Plant Cell, 23: 4112–4123.
-  Sharma, R., Singh, S., 2002. Etiolation reduces phenolic content and polyphenol oxidase activity at the pre-culture stage and in vitro exudation of phenols from mango explants. Tropical Agriculture, 79: 94-99.
-  Thomas, TD., 2008. The role of activated charcoal in plant tissue culture. Biotechnology Advances, 26(6): 618-631.
-  Wongwicha, W., Tanaka, H., Shoyama, Y., Tuvshintogtokhd, I., Putalun, W., 2008. Production of Glycyrrhizin in Callus Cultures of Licorice. Zeitschrift Fur Naturforsch, 63c: 413-417.
-  Yali, L., Tingting, M., Yuxi, W., Zhang, X., 2016. Study on enzymatic browning in suspension cultures of licorice cells. Biotechnology & Biotechnological Equipment, 30(2): 277-283.
-  Zahedzadeh F., Mahna, N., Kakavan, F., Zaare-Nahandi, F., Panahandeh Yengejeh, J., (2014). Effect of concentration and source of carbohydrate on in vitro production of anthocyanin in apple. Journal of Biotechnology, 5(4): 37-47.