تأثیر محرک‌های رشد گیاهی بر میزان ترکیبات بیوشیمیایی و برخی از متابولیت‌های ثانویه بافت کالوس گیاه رازیانه (Foeniculum vulgare) در شرایط کشت درون‌شیشه‌ای

نوع مقاله : مقاله علمی - پژوهشی

نویسندگان

1 گروه آموزشی ژنتیک و تولیدات گیاهی، دانشگاه محقق اردبیلی، اردبیل، ایران

2 گروه ژنتیک و تولیدات گیاهی، دانشگاه محقق اردبیلی، اردبیل، ایران

3 گروه آموزشی ژنتیک و تولیدات گیاهی، دانشکده کشاورزی و منابع طبیعی دانشگاه محقق اردبیلی، اردبیل، ایران

4 گروه فارماکگنوزی دانشکده داروسازی دانشگاه علوم پزشکی اردبیل، اردبیل، ایران

10.22092/ijrfpbgr.2024.363423.1449

چکیده

سابقه و هدف
گیاه رازیانه با نام علمی ( L. Foeniculum vulgare) عضوی از خانواده چتریان (Apiaceae) است­. گیاه رازیانه به عنوان گیاه دارویی ارزشمند در طب سنتی ایران و کشورهای دیگر مطرح می­باشد که برای درمان بسیاری از بیماری­های عفونی، گوارشی و غیره مورد توجه بوده است. ازجمله ترکیبات با ارزش دارویی بالای موجود در این گیاه، می‌توان به خانواده بزرگ فلاونوئیدها اشاره کرد. با توجه به خواص منحصر به فرد گیاه رازیانه و اهمیت آن در صنایع دارویی و غذایی و اهمیت روش­های نوین کشت بافت گیاهی برای تولید و افزایش میزان متابولیت­های ثانویه گیاهی، این تحقیق در راستای افزایش تولید ترکیبات بیوشیمیایی و متابولیت­های ثانویه با ارزش همانند روتین، کوئرستین و کمپفرول از بافت کالوس حاصل از این گیاه­، با استفاده از متیل­جاسمونات، اسید سالیسیلیک­ و فنیل­آلانین به‌عنوان عوامل محرک در غلظت­ها و مدت زمان­های مختلف انجام شد.
مواد و روش‌ها
در این پژوهش ارزیابی میزان تأثیر محرک­های رشد گیاهی ازجمله متیل­جاسمونات، سالیسیلیک­ اسید و فنیل­آلانین در غلظت­های 50، 100 و 200 میلی­گرم در لیتر (صفر به عنوان تیمار شاهد)، شامل ۱۰ تیمار در سه زمان 24، 48 و 96 ساعت، به‌صورت آزمایش فاکتوریل در قالب طرح کاملاً تصادفی با سه تکرار انجام شد. تأثیر محرک‌های رشد گیاهی بر سطح ترکیبات بیوشیمیایی ازجمله میزان پروتئین، فعالیت آنزیم­های پراکسیداز و کاتالاز، میزان تجمع اسید­آمینه پرولین، آنتوسیانین و فلاونوئید کل و میزان روتین، کوئرستین و کامپفرول پرداخته شد. برای این منظور، نمونه کالوس­های حاصل از محیط کشت MS حاوی 2 میلی­گرم در لیتر NAA و یک میلی­گرم در لیتر Kin برای مدت زمان‌های 24، 48 و 96 ساعت توسط محرک‌های رشد ذکرشده تحت تیمار قرار گرفت.
نتایج
طبق نتایج به‌دست آمده میزان پروتئین، تجمع اسید­آمینه پرولین، آنتوسیانین و فلاونوئید کل و میزان روتین، کوئرستین و کامپفرول به‌طور معنی­داری و در سطح احتمال یک درصد تحت تأثیر اثر متقابل دو جانبه نوع محرک استفاده شده و مدت زمان استفاده از محرک قرار گرفت. استفاده از غلظت­های بالاتر متیل­جاسمونات یا سالیسیلیک ­اسید موجب افزایش معنی­دار میزان تولید پرولین، فلاونوئید و آنتوسیانین در نمونه کالوس­های جمع­آوری شده از محیط کشت شد. به‌طوری‌که بیشترین مقدار تجمع پرولین (93/0 میکروگرم در میلی­گرم پروتئین) مربوط به بافت کالوس جمع‌آوری شده از محیط کشت حاوی 200 میلی­گرم در لیتر متیل­جاسمونات برای مدت زمان 96 ساعت بود. همچنین بیشترین مقدار فلاونوئید و آنتوسیانین به ترتیب 25/0 و 45/5 میلی­گرم بر گرم وزن کالوس مربوط به محیط کشت حاوی 200 میلی­گرم در لیتر متیل­جاسمونات به مدت زمان ­96 ساعت بود. همچنین بیشترین میزان فعالیت آنزیم پراکسیداز و کاتالاز مربوط به محیط کشت حاوی متیل­جاسمونات در غلظت 200 میلی‌گرم در لیتر و مدت زمان 96 ساعت بود. از سوی دیگر، طبق نتایج به‌دست آمده با افزایش غلظت متیل­جاسمونات به 200 میلی­گرم در لیتر میزان تولید روتین در نمونه کالوس­های گیاه­ رازیانه افزایش یافت. بیشترین میزان کوئرستین (24/5 میلی­گرم بر گرم وزن کالوس) مربوط به محیط کشت حاوی 200 میلی­گرم در لیتر متیل­جاسمونات به مدت 24 ساعت بود.
نتیجهگیری
طبق نتایج به‌دست آمده در این پژوهش تیمار کالوس­ با غلظت­های بالاتر (100 و 200 میلی­گرم در لیتر) متیل­جاسمونات، اسید سالیسیلیک­ و فنیل­آلانین، امکان افزایش تولید متابولیت­های ثانویه گیاهی (روتین، کوئرستین و کمپفرول) را در این گیاه فراهم می­نماید.

کلیدواژه‌ها

موضوعات


  1. Abdulhafiz, F., 2022. Plant cell culture technologies: A promising alternatives to produce high-value secondary metabolites. Arabian Journal of Chemistry, 104161.‏ https://doi.org/10.1016/j.arabjc.2022.104161
  2. Afify, A.E.M., El-Beltagi, H.S., Hammama, A.A.E.A., Sidky, M.M. and Mostafa, O.F.A. 2011. Distribution of transanethole and estragole in fennel (Foeniculum vulgare Mill) of callus induced from different seedling parts and fruits. Notulae Scientia Biologicae, 3(1): 79-86.
  3. Ahmed, A.F., Shi, M., Liu, C., and Kang, W., 2019. Comparative analysis of antioxidant activities of essential oils and extracts of fennel (Foeniculum vulgare) seeds from Egypt and China. Food Science and Human Wellness, 8(1): 67-72.‏
  4. Alexiou, A., Höfer, V., Dölle‐Bierke, S., Grünhagen, J., Zuberbier, T., and Worm, M., 2022. Elicitors and phenotypes of adult patients with proven IgE‐mediated food allergy and non‐immune‐mediated food hypersensitivity to food additives. Clinical & Experimental Allergy, 52(11): 1302-1310.‏
  5. Alvarez, M.E., Savouré, A. and Szabados, L., 2022. Proline metabolism as regulatory hub. Trends in Plant Science, 27(1): 39-55.‏
  6. Asgari-Targhi, G., Iranbakhsh, A., Ardebili, Z.O. and Tooski, A.H., 2021. Synthesis and characterization of chitosan encapsulated zinc oxide (ZnO) Nano-composite and its biological assessment in pepper (Capsicum annuum) as an elicitor for in vitro tissue culture applications. International Journal of Biological Macromolecules, 189: 170-182.‏
  7. Bates, L.S., 1973. Rapid determination of free proline for water-stress studies. Plant and Soil, 39: 205-207.
  8. Belabdelli, F., Piras, A., Bekhti, N., Falconieri, D., Belmokhtar, Z. and Merad, Y., 2020. Chemical composition and antifungal activity of Foeniculum vulgareChemistry Africa, 3: 323-328.‏
  9. Bhaskar, R., Xavier, L.S.E., Udayakumaran, G., Kumar, D.S., Venkatesh, R., and Nagella, P., 2022. Biotic elicitors: A boon for the in-vitro production of plant secondary metabolites. Plant Cell, Tissue and Organ Culture 149(1-2): 7-24.‏
  10. Bradford, M.M., 1976. A rapid sensitive method for the quantitation of microgram quantities of protein utilizing the principle of proteindye binding. Analytical Biochemistry, 72(1-2): 248-254.
  11. Burdziej, A., Bellée, A., Bodin, E., Valls Fonayet, J., Magnin, N., Szakiel, A. and Corio-Costet, M.F., 2021. Three types of elicitors induce grapevine resistance against downy mildew via common and specific immune responses. Journal of Agricultural and Food Chemistry, 69(6):1781-1795.‏
  12. Cayetano‐Salazar, L., Olea‐Flores, M., Zuñiga‐Eulogio, M.­, Weinstein‐Oppenheimer, C., Fernández‐Tilapa, G., Mendoza‐Catalán, M.­A., and Navarro‐Tito, N., 2021. Natural isoflavonoids in invasive cancer therapy: From bench to bedside. Phytotherapy Research 35(8): 4092-4110.‏
  13. Chanes, B. and Mahely, A.C., 1996. Assay of catalase and peroxidase. In: Methods in enzymology (Eds. Colowick, S.P. and Kaplan, N. D.) 2:764-791. Academic Press, New York.
  14. Chang, C., Yang, M., Wen, H. and Chern, J., 2002. Estimation of total flavonoid content in propolis by two complementary colorimetric methods. Food and Drug Analysis, 10: 178-182.
  15. Di Napoli, M., Castagliuolo, G., Badalamenti, N., Maresca, V., Basile, A., Bruno, M. and Zanfardino, A., 2022. Antimicrobial, antibiofilm, and antioxidant properties of essential oil of Foeniculum vulgare leaves. Plants, 11(24): 35-73.‏
  16. Dias, M.C., Pinto, D.C., and Silva, A.M., 2021. Plant flavonoids: Chemical characteristics and biological activity. Molecules 26(17): 5377.‏
  17. Di-Meo, S. and Venditti, P., 2020. Evolution of the knowledge of free radicals and other oxidants. Oxidative Medicine and Cellular Longevity. Pp:1-32.
  18. Farjaminejad, R., Zare, N., Asghari Zakaria, R and Farjaminejad, M., 2016.The effect of l-tyrosine on thebain production in cell suspension culture (Papaver bracteatum). Journal of Medicinal Plants, 2(58): 110-119 (In Persian).
  19. Galasso, M., Gambino, S., Romanelli, M.G., Donadelli, M., and Scupoli, M.T., 2021. Browsing the oldest antioxidant enzyme: catalase and its multiple regulation in cancer. Free Radical Biology and Medicine 172: 264-272.‏
  20. Gorlenko, C.L., Kiselev, H.Y., Budanova, E.V., Zamyatnin, A.A. and Ikryannikova, L.N., 2020. Plant secondary metabolites in the battle of drugs and drug-resistant bacteria: new heroes or worse clones of antibiotics. Antibiotics, 9(4): 154-170.‏
  21. Ho, T.T., Murthy, H.N. and Park, S.Y., 2020. Methyl jasmonate induced oxidative stress and accumulation of secondary metabolites in plant cell and organ cultures. International Journal of Molecular Sciences21(3): 698-716.‏
  22. Hosseini, A., Razavi, B. M., Banach, M., and Hosseinzadeh, H., 2021. Quercetin and metabolic syndrome: A review. Phytotherapy Research, 35(10), 5352-5364.‏
  23. Huang, D., Luo, H., Zhang, C., Zeng, G., Lai, C., Cheng, M. and Li, T., 2019. Nonnegligible role of biomass types and its compositions on the formation of persistent free radicals in biochar: Insight into the influences on Fenton-like process. Chemical Engineering Journal,361: 353-363.‏
  24. Hurst, W.J., Maryin, R.A. and Zoumas, B.L., 1983. Application of HPLC to characterization of individual carbohydrates in foods. Journal of Food Science, 44:892-904.
  25. Isah, T., 2019. Stress and defense responses in plant secondary metabolites production. Biological research http://dx.doi.org/10.1186/s40659-019-0246-3
  26. Ishikawa, A., Kitamura, Y., Ozeki, Y. and Watanabe, M., 2007. Different responses of shoot and root cultures of Glehnia littoralis to yeast extract. Journal of Natural Medicines, 61: 30-37.
  27. Jadid, N., Widodo, A. F., Ermavitalini, D., Sa'adah, N.N., Gunawan, S. and Nisa, C., 2023. The medicinal Umbelliferae plant Fennel (Foeniculum vulgare): cultivation, traditional uses, phytopharmacological properties, and application in animal husbandry. Arabian Journal of Chemistry, 21(3): 123-136.‏
  28. Kang, S.M., Jung, H.Y., Kang, Y.M. and Yu, D.J., 2004. Effects of methyl jasmonate and salicylic acid on the production of tropane alkaloids and the expressionof PMT and H6H in adventitious root cultures of Scopolia parviflora. Plant Science, 166: 745-751.
  29. Kurtulbaş, E., Albarri, R., Torun, M., and Şahin, S., 2022. Encapsulation of Moringa oleifera leaf extract in chitosan-coated alginate microbeads produced by ionic gelation. Food Bioscience 50: 102-128.‏
  30. Ku-Vera, J.C., Jiménez-Ocampo, R., Valencia-Salazar, S.S., Montoya-Flores, M.D., Molina-Botero, I.C., Arango, J., and Solorio-Sánchez, F.J., 2020. Role of secondary plant metabolites on enteric methane mitigation in ruminants. Frontiers in Veterinary Science, 7: 584.‏
  31. Laoué, J., Fernandez, C., and Ormeño, E., 2022. Plant flavonoids in mediterranean species: A focus on flavonols as protective metabolites under climate stress. Plants, 11(2): 172.‏
  32. Lebaschy, M.H., Sharifi Ashoorabadi, E. and Bakhtiary, M. 2010. The effects of plant densities on yields of Foeniculum vulgare Mill. under dry farming. Iranian Journal of Medicinal and Aromatic Plants Research, 26(1):121-132.‏
  33. Lefevere, H., Bauters, L. and Gheysen, G., 2020. Salicylic acid biosynthesis in plants. Frontiers in Plant Science, 11: 338- 347.‏
  34. Li, Y., Kong, D., Fu, Y., Sussman, M.R. and Wu, H., 2020. The effect of developmental and environmental factors on secondary metabolites in medicinal plants. Plant Physiology and Biochemistry, 148: 80-89.‏
  35. Liu, D., Mu, Q., Li, X., Xu, S., Li, Y. and Gu, T., 2022. The callus formation capacity of strawberry leaf explants is modulated by DNA methylation. Horticulture Research, 9: 23-51
  36. Mac-Adam, J.W., Nelson, C.J. and Sharp, R.E., 1992. Peroxidase activity in the leaf elongation zone of tallfescue. Plant Physiology, 99: 872-878.
  37. Marchi, D., Lanati, D., Mazza, G. and Cascio, P., 2019. Composizione in antociani e flavonoli di vini prodotti nel territorio svizzero. In BIO Web of Conferences (15): 15-24.
  38. Mehra, N., Tamta, G. and Nand, V., 2021. A review on nutritional value, phytochemical and pharmacological attributes of Foeniculum vulgareJournal of Pharmacognosy and Phytochemistry, 10(2): 1255-1263.‏
  39. Modarresi, M., Chahardoli, A., Karimi, N. and Chahardoli, S., 2020. Variations of glaucine, quercetin and kaempferol contents in Nigella arvensis against Al2O3, NiO, and TiO2 nanoparticles. Heliyon, 6(6): 121-134.
  40. Nafie, E., Hathout, T., Mokadem, A. and Shyma, A. 2011. Jasmonic acid elicits oxidative defense and detoxification systems in Cucumis melo cells. Brazilian Journal of Plant Physiology, 23: 161-174.‏
  41. Sabzi-Nojadeh, M., Aharizad, S., Mohammadi, S. A. and Amani, M. 2023. Screening of several important compounds production in fennel (Foeniculum vulgare Mill.) populations. Journal of Medicinal Plants22(85), 98-112.‏ (In Persian)
  42. Noruzpour, M., Zare, N., Asghari-Zakaria, R. and Sheikhzade-Mosadegh, P., 2019. Effect of culture media and plant growth regulators on in vitro growth and production of secondary metabolites in Vaccinium arctostaphylos Iranian Journal of Horticultural Science, 50­(2): 451-464. (In Persian)
  43. Pan, R., Bai, X., Chen, J., Zhang, H. and Wang, H., 2019. Exploring structural diversity of microbe secondary metabolites using OSMAC strategy: A literature review. Frontiers in Microbiology, 10: 294-312.‏
  44. Pang, Z., Chen, J., Wang, T., Gao, C., Li, Z., Guo, L. and Cheng, Y., 2021. Linking plant secondary metabolites and plant microbiomes: a review. Frontiers in Plant Science 12: 62-78.‏
  45. Patel, Z.M., Mahapatra, R. and Jampala, S.S.M., 2020. Role of fungal elicitors in plant defense mechanism. In Molecular Aspects of Plant Beneficial Microbes in Agriculture. 143-158.
  46. Rodrigues, C., Pinto, A., Faria, A., Teixeira, D., van Wegberg, A. M., Ahring, K. and Rocha, J.C., 2021. Is the phenylalanine-restricted diet a risk factor for overweight or obesity in patients with phenylketonuria (PKU). A systematic review and meta-analysis. Nutrients, 13(10): 34-43.‏
  47. Ruan, J., Zhou, Y., Zhou, M., Yan, J., Khurshid, M., Weng, W. and Zhang, K., 2019. Jasmonic acid signaling pathway in plants. International Journal of Molecular Sciences, 20(10): 24-79.‏
  48. Saleem, M., Fariduddin, Q. and Castroverde, C.D.M., 2021. Salicylic acid: A key regulator of redox signalling and plant immunity. Plant Physiology and Biochemistry,168: 381-397.‏
  49. Shabani, L., Ehsanpour, A.A., Asgari, G. and Emami, J. 2009. Glycyrrhizin production by in vitro cultured Glycyrrhiza glabra elicited by methyl Jasmonate and salicylic acid. Russian Journal of Plant Physiology, 56: 621 -626.
  50. Shafighi, S., Moieni, A. and Monfared, S.R., 2022. Effects of methyl jasmonate, salicylic acid and phenylalanine on aloe emodin and aloin in diploid and tetraploid Aloe barbadensis. International Journal of Horticultural Science 28.‏ https://doi.org/10.31421/ijhs/28/2022/9304
  51. Tang, S.M., Deng, X.T., Zhou, J., Li, Q. P., Ge, X.X. and Miao, L., 2020. Pharmacological basis and new insights of quercetin action in respect to its anti-cancer effects. Biomedicine & Pharmacotherapy, 121:109604.‏
  52. Vaou, N., Stavropoulou, E., Voidarou, C., Tsigalou, C. and Bezirtzoglou, E., 2021. Towards advances in medicinal plant antimicrobial activity: A review study on challenges and future perspectives. Microorganisms, 9(10): 2041.‏
  53. Wagner, G.J., 1979. Content and vacuole/extra vacuole distribution of neutralsugars, free amino acids and anthocyanins in protoplasts. Plant Physiology, 64: 88-93.
  54. Wan, Q., Zhang, R., Zhuang, Z., Li, Y., Huang, Y., Wang, Z. and Tang, B. Z., 2020. Molecular engineering to boost AIE‐active free radical photogenerators and enable high‐performance photodynamic therapy under hypoxia. Advanced Functional Materials, 30(39): 200-205.‏
  55. Yang, I. J., Lee, D.U., and Shin, H.M., 2015. Anti-inflammatory and antioxidant effects of coumarins isolated from Foeniculum vulgare in lipopolysaccharide-stimulated macrophages and 12-O-tetradecanoylphorbol-13-acetate-stimulated mice. Immunopharmacology and Immunotoxicology, 37(3): 308-317.‏
  56. Zare, N., Noruzpour, M. and Sheikhzadeh, P., 2021. Effects of yeast extract on growth, biochemical properties and production of secondary metabolites in in vitro cultures of Vaccinium arctostaphylosIranian Journal of Plant Biology, 13(1): 37-54. (In Persian)
  57. Zare-Hassani, E., Motafakkerazad, R., Razeghi, J. and Kosari-Nasab, M., 2019. The effects of methyl jasmonate and salicylic acid on the production of secondary metabolites in organ culture of Ziziphora persica. Plant Cell, Tissue and Organ Culture, 138: 437-444.‏
  58. Zhang, L. and Xing, D. 2008. Methyl jasmonate induces production of reactive oxygen species and alterations in mitochondrial dynamics that precede photosynthetic dysfunction and subsequent cell death. Plant Cell Physiology, 49(7): 1092 -1111.
  59. Zhang, Y. and Li, X. 2019. Salicylic acid: biosynthesis, perception, and contributions to plant immunity. Current opinion in plant biology, 50: 29-36.‏
  60. Zou, Q., Wang, N., Gao, Z., Xu, H., Yang, G., Zhang, T. and Chen, X. 2020. Antioxidant and hepatoprotective effects against acute CCl4‐induced liver damage in mice from red‐fleshed apple flesh flavonoid extract. Journal of Food Science, 85(10): 3618-3627.‏