1
گروه اصلاح نباتات و بیوتکنولوژی. دانشکده کشاورزی. دانشگاه زابل. زابل. ایران
2
گروه زراعت. دانشکده کشاورزی. دانشگاه زابل. زابل. ایران
10.22092/ijrfpbgr.2024.363348.1447
چکیده
سابقه و هدف: شیرینبیان (Glycirrhiza glabra L.)، گیاهی چندساله از خانواده Fabaceae، سرشار از متابولیتهای ثانویه فعال زیستی است که برای درمان طیف وسیعی از بیماریهای انسانی استفاده میشود. امروزه از روشهای مختلف کشت بافت برای افزایش بیوسنتز متابولیتهای ثانویه مانند دفاع گیاه و تحریک پاسخ استرس در سلولهای گیاهی به کمک الیسیتورها استفاده میشود. قارچهای بیماریزای گیاهی، سلولاز تولید میکنند و سلولاز میتواند به عنوان محرکی برای تحریک تولید متابولیتهای ثانویه در شرایط کشت سوسپانسیون سلولهای گیاهی استفاده شود. هدف از این تحقیق، اثر آنزیم سلولاز بهدستآمده از قارچAspergilus niger بر میزان فعالیت آنتیاکسیدانی (روش DPPH) و فعالیت آنزیمهای آنتیاکسیدانی در شرایط کشت سوسپانسیون سلولی شیرینبیان است. مواد و روشها بذر شیرینبیان از منطقه سمیرم استان اصفهان جمعآوری شد. بذرها پس از ضدعفونی در یک محیط MS 1/2 کشت داده شدند. به منظور القای کالوس، هیپوکوتیل و کوتیلدون در محیط MMS حاوی تنظیمکنندهای رشد (دو میلیگرم در لیتر BA و نیم میلیگرم در لیتر NAA) با ساکارز 3% و آگار 7/0 درصد کاشته شدند. نیم گرم کالوس فیبری تولید شده در زیر هود استریل به ارلنهای حاوی 50 سیسی محیط کشت مایع MMS حاوی دو میلیگرم در لیتر هورمون BA و نیم میلیگرم در لیتر هورمون NAA منتقل و در انکوباتور شیکردار با سرعت 150 دور در دقیقه، دمای 25 درجه سانتیگراد و تاریکی قرار داده شد. در روز نوزدهم پس از کشت، آنزیم سلولاز با غلظت 200 میکروگرم بر میلیلیتر به هریک از ارلنها در زیر هود استریل اضافه گردید. سپس برداشت در فواصل زمانی صفر (شاهد)، 24، 48 و 72 ساعت پس از افزودن الیسیتور انجام شد. کالوسهای دیر واکشت شده نیز به عنوان یک تیمار در نظر گرفته شد. تجزیه آماری به صورت طرح کاملاً تصادفی با سه تکرار انجام شد. صفات مورد بررسی شامل: فعالیت آنزیمهای اکسیدانی کاتالاز، سوپراکسید دیسموتاز، پلیفنل اکسیداز و گایاکول پراکسیداز و فعالیت آنتیاکسیدانی (روش DPPH) بودند. برای تعیین روابط بین فعالیت آنتیاکسیدانی و فعالیت آنزیمها از تجزیه همبستگی استفاده شد و برای تعیین روابط بین فواصل زمانی صفر، 24، 48 و 72 ساعت افزودن الیسیتور بر فعالیتهای آنزیمی، از تجزیه رگرسیون استفاده گردید. نتایج اثر آنزیم سلولاز بر تمامی صفات بهجز سوپراکسید دیسموتاز در سطح احتمال یک درصد معنیدار بود. فعالیت آنزیمهای آنتیاکسیدانی و فعالیت آنتیاکسیدانی (روش DPPH) در 72 ساعت پس از تیمار، بیشترین افزایش را نسبت به شاهد داشت. تجزیه همبستگی بین صفات نشان داد که همبستگی بین آنزیم کاتالاز با آنزیمهای پلیفنل اکسیداز و گایاکول پراکسیداز و همبستگی بین آنزیم گایاکول پراکسیداز با آنزیم پلیفنل اکسیداز مثبت و معنیدار بود. فعالیت آنتیاکسیدانی نیز همبستگی مثبت و معنیداری با فعالیت آنزیمهای کاتالاز و پلیفنل اکسیداز نشان داد. نتایج تجزیه رگرسیون رابطه مثبت و معنیداری بین فواصل زمانی افزودن الیسیتور بر فعالیتهای آنزیمی (بجز سوپراکسید دیسموتاز و اسکوربات پراکسیداز) و فعالیت آنتیاکسیدانی نشان داد. نتیجهگیری استفاده از آنزیم سلولاز مشتق از قارچ Aspergilus niger در شرایط کشت سوسپانسیون سلولی باعث افزایش فعالیت آنتیاکسیدانی و فعالیت آنزیمهای آنتیاکسیدانی در شیرینبیان شده است. آنزیم سلولاز در شرایط کشت سوسپانسیون سلولی باعث ایجاد تنش سلولی میشود و این تنش باعث تحریک سازوکارهای دفاعی گیاه مانند آنزیمهای آنتیاکسیدانی میگردد. همبستگی مثبت و معنیداری بین فعالیت آنتیاکسیدانی (روش DPPH) و فعالیت برخی آنزیمهای آنتیاکسیدانی مانند پلیفنلاکسیداز و کاتالاز مشاهده شد که نشاندهنده تأثیر مثبت عامل قارچی در تحریک تولید متابولیتهای ثانویه و افزایش ظرفیت مهار رادیکالهای آزاد در شرایط کشت سوسپانسیون سلولی شیرینبیان است. با توجه به رابطه خطی معنیدار بین فواصل زمانی افزودن الیسیتور بر فعالیتهای آنزیمی (بجز سوپراکسید دیسموتاز و اسکوربات پراکسیداز) و فعالیت آنتیاکسیدانی، مدت زمان 72 ساعت بهعنوان بهترین فاصله زمانی اعمال الیستور قارچی تعیین شد.
Abbaszadeh, F., Daneshvar, M.H., Salehi Salimi, M., & Lotfi Jalal Abadi, A. 2023. Determining the best combination of explant and plant growth regulators on callogenesis, indirect organogenesis, proliferation, and rooting of Lavandula officinalis Iranian Journal of Rangelands and Forests Plant Breeding and Genetic Research. 30(2): 306-323. (in Persian).
Abdel-Azeem, A.M., Abdel-Azeem, M.A., & Khalil, W.F. 2019. Endophytic fungi as a new source of antirheumatoid metabolites. In Bioactive Food as Dietary Interventions for Arthritis and Related Diseases, 2nd;Watson, R.R., Preedy, V.R., Eds.; Academic Press: Cambridge, MA, USA, 355-384.
Adil, M., Ren, X., & Ryong Jeong, B. 2019. Light elicited growth, antioxidant enzymes activities and production of medicinal compounds in callus culture of Cnidium officinale Journal of Photochemistry & Photobiology,B: Biology. 196: 1-7. https://doi.org/10.1016/j.jphotobiol.2019.05.006.
Adil, M., Ren, X., Kang, D.I., & Jeong, B.R. 2018. Effect of explant type and plant growth regulators on callus induction, growth and secondary metabolites production in Cnidium officinale Molecular Biology Reports. 45 (3): 1919-1927. https://doi.org/10.1007/s11033-018-4340-3.
Ahmad, Z., Shahzad, A., & Sharma, S. 2018. Enhanced multiplication and improved ex vitro acclimatization of Decalepis arayalpathra. Biologia Plantarum. 1: 1-10. https://doi.org/10.1007/s10535-017-0746-3.
Ali, M.B., Yu, K.W., Hahn, E.J., & Paek, K.Y. 2006. Methyl jasmonate and salicylic acid elicitation induces ginsenosides accumulation, enzymatic and non-enzymatic antioxidant in suspension culture Panax ginseng roots in bioreactors. Plant Cell Reports. 25 (6): 613-620. https://doi.org/10.1007/s00299-005-0065-6.
Ali, MB., Yu, KW., Hahn, EJ., & Paek, KY. 2006. Methyl jasmonate and salicylic acid induces ginsenosides accumulation, enzymatic and non-enzymatic antioxidant in suspension culture Panax ginseng roots in bioreactors. Plant Cell Report. 25 (6): 613-620. https://doi.org/10.1007/s00299-005-0065-6.
Allahdou, M., Omidi, M., Bihamta, M.R., Abbasi, A.R., & Fakheri, B.A. 2019. Study of the effect of different antioxidants in reducing the browning of callus and its biomass production in two species of licorice. Iranian Journal of Rangelands and Forests Plant Breeding and Genetic Research. 27(1): 120-131. (in persian).
Asthir, B., Koundal, A., & Bains, N.S. 2012. Putrescine modulates antioxidant defense response in wheat under high temperature stress. Biologia Plantarum. 56: 757-761. https://doi.org/10.1007/s10535-012-0209-1.
Baba, M. and Shigeta, S. 1993. Antiviral activity glycyrrhizin against varicella zoster virus in vitro. Mund Kiefer Gesichtchir,3 (1), 3-30.
Beers, G. R. & sizer, I.W. 1952. A spectrophotometric method for measuring the breakdown of hydrogen peroxide by catalase. Biological Chemistry. 195(1): 133-140.
Carpita, N.C., Gibeaut, D.M. 1993. Structural models of primary cell walls in flowering plants, consistency of molecular structure with the physical properties of the walls during growth. Plant Journal, 3: 1-30. https://doi.org/10.1111/j.1365-313X.1993.tb00007.x.
Chattopadhyay, S., Farkya, S., Srivastava, A.K. & Bisaria, V.S. 2002. Bioprocess considerations for production of secondary metabolites by plant cell suspension cultures. Biotechnology Bioprocess Engineering, 7(3): 138-149. https://doi.org/1007/BF02932911.
Colalto, C. 2010. Herbal in traction on absorbtion of drugs: Mechanisms of action and clinical risk assessment. Pharmacology Research, 62,207-227.
Chen, S., Vaghchhipawala, Z., Li, W., Asard, H., & Dickman, M.B. 2004. Tomato phospholipid Hydroperoxide glutathione peroxidase inhibits cell death induced by Bax and oxidative stresses in yeast and plants. Plant Physiology. 135 (3): 1630–1641. https://doi.org/10.1104/pp.103.038091.
Christen, A., Gibson, D., & Bland, T. 1991. Production of Taxol or Taxol-Like Compounds in cell Culture. US Patent 5019504A,
Elkahoui, S., Hernandez, J.A., Abdelly, C., Ghrir, R., & Limam, F. 2005. Effects of salt on lipid peroxidation and antioxidant enzyme activities of Catharanthus roseus suspension cells. Plant Science. 168 (3): 607-613. https://doi.org/10.1016/j.plantsci.2004.09.006.
Fielding, J. L. & Hall. J., 1978. A biochemical and cytochemical Study of peroxidase a activity in root pea. Journal of Experimental Botany, 29: 98-989.
Fu, TJ., Singh, G., & Curtis, WR. 1999. Plant cell culture for the production of food ingredients. Plenum Publisher, New York.
Giannopolities, C. N. & Ries, S.K. 1977. Superoxide dismutase. I. Occurrence in higher plants. Plant Physiology. 59: 309-314. https://doi.org/10.1104/pp.59.2.309
Ghahraman, A. (1999). Basic Botany: Anatomy and Morphology, University of Tehran Press. 1, 539-542.
Haji Mehdipor, H., Amanzade, Y., Hasanlu, T., Shekarchi, M., Abedi, Z. and Pirali Hamedani, M. 2009. Quality survey of collected Licorice root from different sites of Iran. Med Plant. J. 7: 3. 106-114. (In Persian).
Jaiswal, N., Verma, Y. & Misra, P. 2017. Micropropagation and in vitro elicitation of licorice (Glycyrrhiza spp.). In vitro Cellular and Developmental Biology- Plant, 53(36): 145-166. https://doi.org/1007/s11627-017-9832-7.
Janovitz-Klapp, A. H., Richard, F. C., Goupy, P. M., & Nicolas, J. J. 1990. Inhibition studies on apple polyphenol oxidase. Journal of Agricultural Food Chemistry, 38, 926-931. https://doi.org/10.1021/jf00094a002
Kaul, S., Ahmed, M., Sharma, T., & Dhar, M.K. 2014. Unlocking the myriad benefits of endophytes: An overview. In Microbial Diversity and Biotechnology in Food Security; Kharwar, R.N., Upadhyay, R., Dubey, N., Raghuwanshi, R., Eds.; Springer: Berlin/Heidelberg, Germany. 41-57.
Lentihet, M.& Nygren, A. (1997). Licorice an old drug and currently a candy with metabolic effects. Journal oral Pathology Medicine, 26 (1), 9-36.
Li, Y.J., Chen, J., Li, Y., Li, Q., Zheng, Y.F., Fu, Y.& Li, P. 2011. Screening and characterization of natural antioxidants in four Glycyrrhiza species by liquid chromatography coupled with electrospray ionization quadrupole time of flight tanden mass spectrometry. Journal of Chromatography, 1218 (45),8181- 8191.
Manivannan, A., Jana, S., Soundararajan, P., Ko, C.H., & Jeong, B.R. 2015. Antioxidant enzymes metabolism and cellular differentiation during the developmental stages of somatic embryogenesis in 'Torilis japonica'(Houtt.) DC. Plant Omics Journal .8 (5): 461-471.
Martinez, F.Z., Constantino, G.G.L., Noyola, T.P., Garcia, F.E., Varaldo, H.P., Rojas, C.M.C., Tapia, G.T. & Valdivia, A.C.R. 2016. Jasmonic acid stimulates the oxidative responses and triterpene production in Jatropha curcas cell suspension cultures through mevalonate as biosynthetic precursor. Plant Cell Tissue and Organ Culture. 127 (1): 47-56. https://doi.org/10.1007/s11240-016-1028-z.
Mittler, R. 2002. Oxidative stress, antioxidants and stress tolerance. Trends plant Science, 7: 405-410.
Mirhaidar, H. 1993. Licorice, Herbal plants used in the treatment of diseases and education. Office of Islamic culture publication, 3: 6-12.
Ramos-Valdivia, A.C., Huerta-Heredia, A.A., Trejo-Tapia, G., & Cerda-Garcı´a-Rojas, C.M. 2012. Secondary metabolites as nonenzymatic plant protectors from oxidative stress. In: Oxidative stress in plants: causes, consequences and tolerance. (Anjum, N.A., Umar, S. and Ahmad, A. eds.). International Publishing House, New Delhi. 413-441.
Rehman, R.U., Zia, M., & Chaudhary, M.F. 2017. Salicylic acid and ascorbic acid retrieve activity of antioxidative enzymes and structure of Caralluma tuberculata Calli on PEG stress. General Physiology and Biophysics. 36 (2):167-174. https://doi.org/10.4149/gpb_2016027.
Samar, F., Mujib, A., & Samaj, J. 2011. Anti-oxidant enzyme responses during in vitro embryogenesis in Catharanthus roseus. Journal of Horticulture Science Biotechnology. 86 (6): 569-574. https://doi.org/10.1080/14620316.2011.11512805.
Scandalios, J.G. 2005. Oxidative stress: Molecular perception and transduction of signals triggering antioxidant gene defenses. Brazil Journal of Medicinal Biology Research. 38(7): 995-1014. https://doi.org/10.1590/s0100-879x2005000700003.
Shetty, T. K., Satav, J. G, & Nair C. K. K. 2002. Protection of DNA and microsomal membranes in vitro by Glycyrrhiza glabra against gamma irradiation. Phytotherapy Research. 16: 576-578. https://doi.org/10.1002/ptr.927.
Soundararajan, P., Manivannan, A., Cho, Y.S., & Jeong, B.R. 2017. Exogenous supplementation of silicon improved the recovery of hyperhydric shoots in Dianthus caryophyllus by stabilizing the physiology and protein expression. Frontiers in Plant Science. 8:1-17. https://doi.org/ 10.3389/fpls.2017.00738.
Strobel, G.A., Stierle, A., & van Kuijk, F.J. 1992. Factors influencing the in vitro production of radiolabeled taxol by Pacific yew, Taxus brevifolia. Plant Science. 84: 65-74.
Sivannandhan, G., Arun, M., Mayavan, S., Rajesh, M., Mariashibu, T. S., Manickavasagam, M., Selvaraj, N., & Ganapathi. 2012. Chitosan enhances withanolides production in adventitious root cultures of Withnia somnifera (L.) Dunal. Industrial Crops and Products, 37: 124-129.
Sivanandhan, G., Dev, G. K., Jeyaraj, M., Rajesh, M., Arjunan, A., Muthuselvam, M. Manickavasagam, M. Selvaraj, N., & Canapathi, A. 2013. Increased production of withanolide A, withanone, and withaferin A in hairy root cultures of Withnia somnifera (L.) Dunal elicited with methyl jasmonate and salicylic acid. Plant Cell, Tissue and Organ Culture, 114: 121-129.
Threlfall D.R, & Whitehead I.M. 1988. Co-ordinated inhibition of squalene synthetase and induction of enzymes of sesquiterpenoid phytoalexin biosynthesis in cultures of Nicotiana tabacum. Phytochemistry. 27 (8): 2567-2580. https://doi.org/10.1016/0031-9422(88)87028-6.
Wang, X., Zhang, H., Chen, L., Shan, L., Fan, G., & Gao, X. 2013. Liquorice, a unique “guide drug” of traditional Chinese medicine: A review of its role in drug interactions. Journal of Ethnopharmacol, 150 (3):781-790. https://doi.org/ 10.1016/j.jep.2013.09.055.
Wang, Zh., Nishioka, M., Kurosaki, Y., Nakayama, T. & Kimura, T. 1995. Gastrointestinal absorption characteristics of glycyrrhizin from Glycyrrhiza extract. Biological and Pharmaceutical Bulletin. 18: 9. 1238-41. https://doi.org/ 10.1248/bpb.18.1238.
Whitehead, I.M., Ewing, D.F., & Threlfall, D.R. 1988. Sesquiterpenoids related to the phytoalexin debneyol from elicited cell suspension cultures of Nicotiana tabacum. Phytochemistry, 27 (5): 1365-1370. https://doi.org/10.1016/0031-9422(88)80195-X.
Yana, MA., Chao, H., Jinyin, C., Haiyun, LI., Kun, HE., Aixin, L., & Duochuan, L. 2015. Fungal cellulase is an elicitor but its enzymatic activity is not required for its elicitor activity. Molecular Plant Pathology. 16(1): 14-26. https://doi.org/1111/mpp.12156.
Yoshimura, K., Yabute, Y., Ishikawa, T., & Shigeoka, S. 2000. Expression of spinach ascorbate peroxidase isoenzymes in response to oxidative stresses. Plant Physiology. 123:223-233. https://doi.org/1104/pp.123.1.223
Zhao, J., Davis, L.C & Verpoorte, R. 2005. Elicitor signal transduction leading to production of plant secondary metabolites. Biotechnology Advances, 23, 283-333.
اله دو, مریم و صابر, ساجده . (1402). تاثیر الیسیتور قارچی سلولاز بر روی فعالیت آنتیاکسیدانی و آنزیمهای آنتی اکسیدانی در کشت سوسپانسیون سلولی شیرین بیان (Glycirrhiza glabra). تحقیقات ژنتیک و اصلاح گیاهان مرتعی و جنگلی ایران, 31(2), 258-274. doi: 10.22092/ijrfpbgr.2024.363348.1447
MLA
اله دو, مریم , و صابر, ساجده . "تاثیر الیسیتور قارچی سلولاز بر روی فعالیت آنتیاکسیدانی و آنزیمهای آنتی اکسیدانی در کشت سوسپانسیون سلولی شیرین بیان (Glycirrhiza glabra)", تحقیقات ژنتیک و اصلاح گیاهان مرتعی و جنگلی ایران, 31, 2, 1402, 258-274. doi: 10.22092/ijrfpbgr.2024.363348.1447
HARVARD
اله دو, مریم, صابر, ساجده. (1402). 'تاثیر الیسیتور قارچی سلولاز بر روی فعالیت آنتیاکسیدانی و آنزیمهای آنتی اکسیدانی در کشت سوسپانسیون سلولی شیرین بیان (Glycirrhiza glabra)', تحقیقات ژنتیک و اصلاح گیاهان مرتعی و جنگلی ایران, 31(2), pp. 258-274. doi: 10.22092/ijrfpbgr.2024.363348.1447
CHICAGO
مریم اله دو و ساجده صابر, "تاثیر الیسیتور قارچی سلولاز بر روی فعالیت آنتیاکسیدانی و آنزیمهای آنتی اکسیدانی در کشت سوسپانسیون سلولی شیرین بیان (Glycirrhiza glabra)," تحقیقات ژنتیک و اصلاح گیاهان مرتعی و جنگلی ایران, 31 2 (1402): 258-274, doi: 10.22092/ijrfpbgr.2024.363348.1447
VANCOUVER
اله دو, مریم, صابر, ساجده. تاثیر الیسیتور قارچی سلولاز بر روی فعالیت آنتیاکسیدانی و آنزیمهای آنتی اکسیدانی در کشت سوسپانسیون سلولی شیرین بیان (Glycirrhiza glabra). تحقیقات ژنتیک و اصلاح گیاهان مرتعی و جنگلی ایران, 1402; 31(2): 258-274. doi: 10.22092/ijrfpbgr.2024.363348.1447