همسانه‌سازی، شناسایی و بررسی بیان ژن stylopine synthase (STS) در مامیران کبیر (Chelidonium majus)

نوع مقاله : مقاله علمی - پژوهشی

نویسندگان

1 ژنتیک و به‌نژادی گیاهی، دانشکده کشاورزی و منابع طبیعی، دانشگاه بین‌المللی امام خمینی (ره)، قزوین، ایران

2 دانشیار، گروه ژنتیک و به‌نژادی گیاهی، دانشگاه بین‌المللی امام خمینی، قزوین، ایران.

10.22092/ijrfpbgr.2023.357538.1405

چکیده

سابقه و هدف:
سنگوئینارین (Sanguinarin) یکی از متابولیت‌های ثانویه مهم از خانواده آلکالوئیدهای گروه بنزیل ایزوکوئینولین می‌باشد که به‌طور گسترده در بیشتر گیاهان خانواده پاپاوراسه(Papaveraceae) ازجمله مامیران کبیر (Chelidonium majus) وجود دارد. سنگوئینارین دارای خواص بسیاری مانند خاصیت ضد میکروبی قوی، ضدقارچی و ضدالتهاب است. کاربرد محرک­های غیرزنده یکی از راهکارهای مؤثر القای تولید و افزایش متابولیت­های ثانویه می­باشد. محرک­هایی مانند متیل‌جاسمونات از طریق تحریک سیستم دفاعی گیاه موجب القاء بیوسنتز و انباشت متابولیت‌های ثانویه می‌شوند. ازآنجایی ‌که گزارشی مبنی بر جداسازی cDNA کدکننده ژن STS در مسیر بیوسنتز آلکالوئید سنگوئینارین در گیاه مامیران وجود ندارد، در این تحقیق اقدام به جداسازی طول کامل این ژن گردید تا فرصتی برای شناسایی و بررسی مسیرهای بنزیل‌ایزوکویینولین ‌که تاکنون شناخته نشده‌اند فراهم گردد. همچنین، پس از جداسازی ژن مذکور، الگوی بیانی این ژن تحت تأثیر محرک غیرزنده متیل جاسمونات در جهت بهبود تولید آن بررسی شد.
مواد و روش­ها:
در این تحقیق، در مرحله اول شناسایی و جداسازی cDNA کدکننده ژن stylopine synthase (STS) از اندام ریشه گیاه مامیران کبیر انجام شد. این ژن یکی از ژن‌های مسیر تولید سنگوئینارین می‌باشد و واکنش تبدیل (S)-Cheilanthifoline به (S)- Stylopine در پل متیلوکسی را سنتز می‌کند که متعلق به زیر خانواده CYP719 است. در مرحله بعدی میزان بیان ژن STS با اعمال تیمار متیل جاسمونات با غلظت 100 میکرومولار در چهار سطح (محلول‌پاشی، آبیاری، ترکیب محلول‌پاشی+ آبیاری و شاهد بدون متیل جاسمونات) در اندام‌های مختلف (برگ، ریشه و ساقه) این گیاه در زمان‌های مختلف پس از تیمار (6، 24 و 48 ساعت) در قالب طرح پایه کاملاً تصادفی در چهار تکرار در شرایط گلخانه‌ای بررسی شد.
نتایج:
جداسازی cDNA ژن STS در دو مرحله انجام شد. ابتدا توالی ناقص (1000 جفت باز) جداسازی شد و بعد با طراحی آغازگرهای جدید بر اساس اطلاعات بدست آمده از توالی اولیه، طول کامل ناحیه کدکننده ژن استیلوپین‌سنتاز (1500 جفت باز) جداسازی و با موفقیت در پلاسمید pTG19-T همسانه‌سازی شد. پس از توالی‌یابی و انجام اصلاحات لازم، توالی ژنی به‌دست ‌آمده با شماره دسترسی KY550671.2 در پایگاه اطلاعاتی NCBI ثبت گردید. با بررسی خصوصیات توالی و مطالعه روابط فیلوژنتیکی، مشخص شد که CYP719A3 حاصل فعالیت ژن STS (ژن همسانه‌سازی و توالی­یابی شده) متعلق به خانواده پروتئینی P450 است. نتایج تجزیه واریانس بیانگر اثر معنی‌دار تیمار متیل ‌جاسمونات در زمان‌های مختلف در بافت‌های متفاوت بر بیان ژن STS گیاه مامیران (در سطح P≤0.01) بود. بیشترین میزان بیان ژن STS در تیمار ترکیب محلول‌پاشی+ آبیاری با متیل ‌جاسمونات در زمان 48 ساعت پس از اعمال تیمار در اندام ریشه بود. مقایسه میانگین بیان نسبی ژن STS نشان داد که میزان بیان این ژن در ریشه، برگ و ساقه مامیران کبیر متفاوت بود، به‌طوری‌که در ریشه 5/1 برابر برگ و 5/2 برابر ساقه بود. بیان بالای ژن STS در ریشه مامیران نشان‌دهنده مؤثر بودن اندام گیاهی در میزان فعالیت ژن می­باشد و از سوی دیگر کاربرد محرک متیل ‌جاسمونات می­تواند نقش مؤثری در افزایش بیان آن داشته باشد.
نتیجه ­گیری:
 متیل‌ جاسمونات سبب افزایش بیان ژن STS در مسیر بیوسنتزی سنگوئینارین شد، به‌طوری‌که بیشترین افزایش بیان در ریشه گیاه مامیران مشاهده گردید. ازاین‌رو، توالی ژن کدکننده STS در مسیر بیوسنتز سنگوئینارین و الگوی بیانی آن در گیاه مامیران کبیر می‌تواند در زمینه مهندسی مسیر این متابولیت ارزشمند استفاده شود.

کلیدواژه‌ها

موضوعات


  1. Ahmad, N., Gupta, S., Husain, M.M. and Mukhtar, H. 2000. Differential antiproliferative and apoptotic response of sanguinarine for cancer cells versus normal cells. Clin Cancer Research, 6: 1524-1528.
  2. Allen, R.S., Miller, J.A.C., Chitty, J.A., Fist, A.J., Gerlach, W. L. and Larkin, P. J. 2008. Metabolic engineering of morphinan alkaloids by over expression and RNAi suppression of salutarinol 7- O-acetyltransferase opium poppy. Plant Biotechnology Journal, 6: 22-30.
  3. Bari, R. and Jones, J.D.G. 2009. Role of plant hormones in plant defense responses. Plant Molecular Biology, 69: 473-488.
  4. Beaudoin, G.A. and Facchini, P.J. 2013. Isolation and characterization of a cDNA encoding (S)-cis-N-methylstylopine 14-hydroxylase from opium poppy, a key enzyme in sanguinarine biosynthesis. Biochemical and biophysical research communications, 431(3): 597-603.
  5. Castillo-Perez, L.J., Alonso-Castro, A.J., Fortanelli-Martínez, J. and Carranza-Alvarez, C. 2021. Biotechnological approaches for conservation of medicinal plants. In Phytomedicine (pp. 35-58). Academic Press.
  6. DeMelo, J.G., Santos, A.G., De Amorim, E.L.C., Do Nascimento, S.C. and De Albuquerque, U.P. 2011. Medicinal plant used as antitumor agents in Brasil: an ethnobotanical approach. Evidence-Based Complementary and Alternative Medicine. 365:359.
  7. Elyasi, R., majdi, M., bahram nezhad, B. and mirzaghaderi, G. 2016. Expression analysis of genes involved in terpenes biosynthesis in black cumin (Nigella sativa) plants treated with methyl jasmonate. Iranian Journal of Rangelands and Forests Plant Breeding and Genetic Research, 24(1): 54-65. doi: 10.22092/ijrfpbgr.2016.106167 (In Persian)
  8. Facchini, P. J. and De Luca, V. 1995. Phloem-specific expression of tyrosine/dopa decarboxylase in opium poppy. Journal of Biological chemistry, 269(43): 26684-26690.
  9. Facchini, P.J., Penzes, C., Johnson, A.G. and Bull, D. 1996. Molecular characterization of berberine bridge enzyme genes from opium poppy. Plant Physiology, 112:1669-1677.
  10. Facchini, P. 2001. Alkaloid biosynthesis in plants: biochemistry, cell biology, molecular regulation, and metabolic engineering applications. Annual Review of Plant Physiology and Plant Molecular Biology, 52: 29-66.
  11. Facchini, P.J. and Park, S.U. 2003. Development and inducible accumulation of gene transcripts involved in alkaloid biosynthesis in opium poppy. Phytochemistry, 64: 177-86.
  12. Garcia, V.P., Valdes, F., Martin, R., Luis, G.C., Afonso, A.M. and Ayala, J.H. 2005. Biosynthesis of antitumoral and bactericidal sanguinarine. Journal of Biomedicine and Biotechnology, 63518: 1-6.
  13. Gerardy, R. and Zek, M. H. 1993a. Purification and characterization of saluraridine: NADPH 7- oxidoreducrase from Papaver somniferum. Phytochemistry, 34(1): 125-132.
  14. Gerardy, R. and Zank, M.H. 1993b. Formation of salutaridine from (R)- reticuline by a membrane-bound cytochrome P-450 enzyme from Papaver somniferum. Phytochemistry, 32: 79-86.
  15. Hagel, J.M., Beaudoin, G.A.W., Fossati, E., Ekins, A., Martin, V.J.J. and Facchini, P.J. 2012. Characterization of a flavoprotein oxidase from opium poppy catalyzing the final steps in sanguinarine and papaverine biosynthesis. Biological Chemistry, 287: 42972-42983.
  16. Hashimoto, T. and Yamada, Y. 1992. Tropane alkaloid biosynthesis: regulation and application. In proceedings of the 7th Annual Pennsylvania State Symposium on plant physiology. American Society of plant physiologists, 122-134.
  17. Ikezawa, N., Iwasa, K. and Sato, F. 2007. Molecular cloning and characterization of methylenedioxy bridge-forming enzymes involved in stylopine biosynthesis in Eschscholzia californica. FEBS Journal, 274: 1019-1035.
  18. Ikezawa, N., Iwasa, K. and Sato, F. 2009. CYP719A subfamily of cytochrome P450 oxygenases and isoquinoline alkaloid biosynthesis in Eschscholzia californica. Plant Cell Reports, 28: 123-133.
  19. Kleinwachter, M., Paules, J., Bloem, E., Schnug, E. and Selmar, D. 2015. Moderate drought and signal-transducer induced biosynthesis of relevant secondary metabolites in thyme (Thymus vulgaris), greater celandine (Chelidonium majus) and parsley (Petroselinum crispum). Industrial Crops and Products, 6: 158-168.
  20. Kutchan, T.M. and Dittrich, H. 1995. Characterization and mechanism of the berberine bridge enzyme, a covalently flavinylated oxidase of benzophenanthridine alkaloid biosynthesis in plants. Biological chemistry, 270: 24475-24481.
  21. Li, J., Lee, E.J., Chang, L. and Facchini, P. J. 2016. Genes encoding norcoclaurine synthase occur as tandem fusions in the Papaveraceae. Scientific Reports, 6: 1-12.
  22. Memelink, J. 2009. Regulation of gene expression by jasmonate hormons. Phytochemistry, 70(13-14): 1560-1570.
  23. Moro, P. A., Cassetti, F., Giugliano, G., Falce, M. T., Mazzanti, G. and Menniti-IPPolito, F. 2009. Hepatitis from greater celandine (Chelidonium majus): review of literature and report of a new case. Ethnopharmacology, 124: 328-332.
  24. Sambrook, J. and Russell, D. W. 2001. Molecular cloning: a laboratory manual. Spring Harbor Laboratory Press, New York.
  25. Tome, F. and Colombo, M. L. 1995. Distribution of alkaloids in chelidonium majus and factors affecting their accumulation. Phytochemistry, 40: 37-39.
  26. Venkatesh, K., Govindaraj, S., Ramachandran, A., Kalimuthu, S. and Perumal, E. V. 2011. Effect of ukrain on cell survival and apoptosis in the androgen-independent prostate cancer cell line PC-3. Environmental Pathology, Toxicology, and Oncology, 30: 11-9.
  27. Weid, M., Ziegler, J. and Kutchan, T. M. 2004. The roles of latex and the vascular bundle in morphine biosynthesis in the opium poppy. Proceedings of the National Academy of Sciences, 101: 57-62.
  28. Winkler, A., Lyskowski, A., Riedl, S., Puhl, M., Kutchan, T. M. and Macheroux, P. 2008. A concerted mechanism for berberine bridge enzyme. Chemical Biology, 4: 739-741.
  29. Yamada, Y., Yoshimoto, T., Yoshida, S. T. and Sato, F. 1992. Characterization of the promoter region of biosynthetic enzyme genes involved in berberine biosynthesis in Coptis japonica. Frontiers in Plant Science, 7: 1-10.
  30. Zhang, J. and Guo, Z. 2006. Effect of methyl jasmonic acid on bacatin III biosynthesis. Tsinghua Science and Technology, 11: 363-367.
  31. Zhao, J. and Sakai, K. 2003. Multiple signaling pathways mediate fungal elicitor-induced β-thujaplicin production in Cupressus lusitanica cell cultures. Journal of Experimental Botany, 54: 647-656.
  32. Zhoulideh, Y., Mohammadi, Y. and Mashayekhi, M. 2022. Effect of methyl jasmonate on Taxol production and bapt gene expression of Taxus baccata. Iranian Journal of Rangelands and Forests Plant Breeding and Genetic Research, 30(1): 86-96. doi: 10.22092/ijrfpbgr.2022.357774.1411 (In Persian)