Identification of Auxin Response Factor (ARF) gene family in Echium plantagineum by Genome-wide analysis

Document Type : Research Paper

Authors

1 Plant Production and Genetics Department, Faculty of Agriculture, Shahid Chamran University of Ahvaz,, Ahvaz, Iran

2 Department of vegetables and irrigated pulse crop research, Seed and Plant Improvement Institute, Agricultural Research, Education and Extension Organization, Karaj, Iran.

10.22092/ijrfpbgr.2024.363113.1445

Abstract

Background and objectives:
Auxin response transcription factors (ARFs) are involved in auxin-mediated responses and play a key role in regulating the growth and development of plant nutrition, such as roots, stems, leaves, and reproductive organs, such as flowers and fruits. A genome-wide analysis of ARFs can improve the understanding of their regulatory role in the growth and development of our knowledge. Although the ARF gene family has been studied in some plant species, its structural features, molecular evolution, and expression profiling in Echium plantagineum are still unknown. This study aims to better understand distinctive structural and functional features among ARF proteins in E. plantagineum.
Methodology:
 In this study, a comprehensive genome-wide analysis was carried out to find All members of the ARF family in E. plantagineum based on two methods: 1) Hidden Markov Model (HMM) profiles of ARF gene family members and 2) Alignment with Arabidopsis (Arabidopsis thaliana) ARF genes sequence. ARF proteins were performed. The conserved motifs of ARF genes were identified, the chromosomal map and location of ARF genes were analyzed using a map chart, phylogenetic relationships using FastTree, and their protein characteristics were analyzed using the Expasy-ProtParam online server. To investigate the phylogenetic relationships of E. plantagineum ARF proteins, a phylogenetic tree was drawn using the alignment of E. plantagineum protein sequences.
Functional annotation and Gene Ontology classification were determined using the g: Profiler web server. The integrated network was predicted to identify co-expressed genes using the GeneMANIA web server.
Results:
 Based on genome-wide analysis, 28 ARF genes were identified, widely distributed in multiple chromosomes of E. plantagineum. These genes have a transcription regulatory activity, and depending on the nature of the sequence, they have an activating or repressing role. Subcellular location prediction showed that the ARF proteins are most present in the nucleus. Phylogenetic analysis of the 28 ARF proteins forms ten main classes; each class is specialized in function and provides insights into different orthologous relationships. The present study identifies the ARF gene family of E. plantagineum and its evolutionary relationship with the members of this family in Arabidopsis species. This issue can help identify ARF genes and reveal their function. Analysis of conserved motifs and domain search in ARF protein sequences showed that ARF proteins have DNA binding domains such as B3 and Auxin_resp domain in their structure. Chromosomal localization analysis showed that ARF members are widely distributed in chromosomes. The analysis of gene ontology terms (GO terms) in the biological process category showed that cellular process regulation, metabolic process regulation, stimulus-response, signaling, and biological regulation are the most significant GO terms.
Conclusion:
The results of this study provide a basis for identifying ARF genes and clarifying their function in 
E. plantagineum, which will be helpful for future research to discover and confirm the function of these genes.

Keywords

Main Subjects


  1. Amir, G. Z., Azadbakht, M., and Keshavarzi, F., 2000. Echium amoenum stimulates of lymphocyte proliferation and inhibit of humoral antibody synthesis.119-124.
  2. Bostancioglu, S.M., Tombuloglu, G., Tombuloglu, H., 2018. Genome-wide identification of barley MCs (metacaspases) and their possible roles in boron-induced programmed cell death. Molecular Biology Reports, 45, 211-225.
  3. Cancé, C., Martin‐Arevalillo, R., Boubekeur, K., & Dumas, R., 2022. Auxin response factors are keys to the many auxin doors. New Phytologist, 235(2), 402-419.
  4. Diao, D., Hu, X., Guan, D., Wang, W., Yang, H. and Liu, Y., 2020. Genome-wide identification of the ARF (auxin response factor) gene family in peach and their expression analysis. Molecular Biology Reports 47, 4331-4344.
  5. El Hafid, R., Blade, S., and Hoyano, Y. 2002. Seeding date and nitrogen fertilization effects on the performance of borage (Borago officinalis). Industrial Crops and Products, 16, 193-199.
  6. Ellis, C. M., Nagpal, P., Young, J. C., Hagen, G., Guilfoyle, T. J., and Reed, J. W., 2005. AUXIN RESPONSE FACTOR1 and AUXIN RESPONSE FACTOR2 regulate senescence and floral organ abscission in Arabidopsis thaliana. Development, 132, 4563-4574.
  7. Finet, C., Berne-Dedieu, A., Scutt, C.P. and Marlétaz, F., 2013. Evolution of the ARF gene family in land plants: old domains, new tricks. Molecular Biology and Evolution, 30(1), 45-56.
  8. Finet, C., Fourquin, C., Vinauger, M., Berne‐Dedieu, A., Chambrier, P., Paindavoine, S., and Scutt, C. P., 2010. Parallel structural evolution of auxin response factors in the angiosperms. The Plant Journal 63, 952-959.
  9. Fioeoen, E., 2000. Medicinal plants in China contain pyrrolizidine alkaloids. Pharmazie 55, I0.
  10. Fleming, A. J. 2006. Plant signalling: the inexorable rise of auxin. Trends in cell biology 16, 397-402.
  11. Guilfoyle, T. J., and Hagen, G. 2007. Auxin response factors. Current opinion in plant biology 10, 453-460.
  12. Hagen, G., and Guilfoyle, T. 2002. Auxin-responsive gene expression: genes, promoters and regulatory factors. Plant molecular biology 49, 373-385.
  13. Huerta-Cepas, J., Serra, F., & Bork, P. 2016. ETE 3: reconstruction, analysis, and visualization of phylogenomic data. Molecular biology and evolution, 33(6), 1635-1638.
  14. Kaul, S., Koo, H. L., Jenkins, J., Rizzo, M., Rooney, T., Tallon, L. J., Feldblyum, T., Nierman, W., Benito, M. I., and Lin, X. 2000. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature, 408, 796-815.
  15. Korasick, D. A., Westfall, C. S., Lee, S. G., Nanao, M. H., Dumas, R., Hagen, G., Guilfoyle, T. J., Jez, J. M., and Strader, L. C., 2014. Molecular basis for Auxin response factor protein interaction and the control of auxin response repression. Proceedings of the National Academy of Sciences, 111, 5427-5432.
  16. Kumar, R., Tyagi, A. K., and Sharma, A. K., 2011. Genome-wide analysis of auxin response factor (ARF) gene family from tomato and analysis of their role in flower and fruit development. Molecular Genetics and Genomics, 2(85), 245-260.
  17. Li, S.B., Xie, Z.Z., Hu, C.G. and Zhang, J.Z., 2016. A review of auxin response factors (ARFs) in plants. Frontiers in plant science 7, 47.
  18. Liu M., Ma Z., Wang A., Zheng T., Huang L., Sun W., Zhang Y., Jin W., Zhan J., Cai Y., 2018 Genome-Wide Investigation of the Auxin Response Factor Gene Family in Tartary Buckwheat (Fagopyrum tataricum). International Journal of Molecular Sciences, 19:3526. doi: 10.3390/ijms19113526.
  19. Liu, P. P., Montgomery, T. A., Fahlgren, N., Kasschau, K. D., Nonogaki, H., and Carrington, J. C. 2007., Repression of auxin response factor 10 by microRNA160 is critical for seed germination and post‐germination stages. The Plant Journal, 52, 133-146.
  20. Mei, M., Ai, W., Liu, L., Xu, X., & Lu, X., 2022. Genome-wide identification of the auxin response factor (ARF) gene family in Magnolia sieboldii and functional analysis of MsARF5. Frontiers in Plant Science,13, 958816.
  21. Mohammadi, S., Khosro, P., and Dinarvand, M., 2019. Antioxidant and Antibacterial Effects of Some Medicinal Plants of Iran. International Journal of Secondary Metabolite, 6, 62-78.
  22. Mohammadi, S., and Piri, K., 2014. Antifungal effects of two medicinal plants native to Iran. International Journal of Advanced Biological and Biomedical Research, 2, 2712-2715.
  23. Mutte S.K., Kato H., Rothfels C., Melkonian M., Wong G.K.S., Weijers D., 2017. Origin and Evolution of the Nuclear Auxin Response System. bioRxiv 1–25. Doi: 10.1101/220731.
  24. Okushima, Y., Overvoorde, P. J., Arima, K., Alonso, J. M., Chan, A., Chang, C., Ecker, J. R., Hughes, B., Lui, A., and Nguyen, D., 2005. Functional genomic analysis of the Auxin response factor gene family members in Arabidopsis thaliana: unique and overlapping functions of ARF7 and ARF19. The Plant Cell, 17, 444-463.
  25. Pei, Q., Li, N., Yang, Q., Wu, T., Feng, S., Feng, X., Jing, Z., Zhou, R., Gong, K., Yu, T. and Wang, Z., 2021. Genome-wide identification and comparative analysis of ARF family genes in three Apiaceae species. Frontiers in genetics, 11, p.1653.
  26. Powers, S.K. and Strader, L.C., 2020. Regulation of auxin transcriptional responses. Developmental Dynamics 249 (4), 483-495.
  27. Price, M. N., Dehal, P. S., and Arkin, A. P., 2010. FastTree 2–approximately maximum-likelihood trees for large alignments. PloS one, 5(3), e9490.
  28. Ranjbar, A., Khorami, S., Safarabadi, M., Shahmoradi, A., Malekirad, A. A., Vakilian, K., Mandegary, A., and Abdollahi, M. 2006. Antioxidant activity of Iranian Echium amoenum Fisch & CA Mey flower decoction in humans: a cross-sectional before/after clinical trial. Evidence-Based Complementary and Alternative Medicine 3(4): 469–473.
  29. Reimand, J., Arak, T., Adler, P., Kolberg, L., Reisberg, S., Peterson, H. and Vilo, J., 2016. g: Profiler—a web server for functional interpretation of gene lists. Nucleic acids research 44(W1), W83-W89.
  30. Rienstra, J., Hernández-García, J., Weijers D. 2023. To bind or not to bind: how auxin response factors select their target genes. Journal of Experimental Botany 74(22), 6922-6932.
  31. Shams, S., Ismaili, A., Firouzabadi, F.N., Mumivand, H. and Sorkheh, K. 2023. Comparative transcriptome analysis to identify putative genes involved in carvacrol biosynthesis pathway in two species of Satureja, endemic medicinal herbs of Iran. Plos one 18(7), p.e0281351.
  32. Shams, S., Norouzi, M. 2019. RNA extraction process (ribonucleic acid) from Satureja medicinal herb. http://ipm.ssaa.ir/Search-Result?page=1&DecNo=139750140003003617&RN=97885.
  33. Shen, C., Wang, S., Bai, Y., Wu, Y., Zhang, S., Chen, M., Guilfoyle, T.J., Wu, P. and Qi, Y., 2010. Functional analysis of the structural domain of ARF proteins in rice (Oryza sativa). Journal of experimental botany, 61(14), pp.3971-3981.
  34. Soria, P.S., McGary, K.L. and Rokas, A., 2014. Functional divergence for every paralog. Molecular biology and evolution 31(4), 984-992.
  35. Tabata R, Ikezaki M, Fujibe T, Aida M, Tian CE, Ueno Y, Yamamoto KT, Machida Y, Nakamura K, Ishiguro S. 2010. Arabidopsisauxin response factor6 and 8 regulate jasmonic acid biosynthesis and floral organ development via repression of class 1 KNOX Plant Cell Physiol 51, 164–175.
  36. Tiwari, S.B., Hagen, G. and Guilfoyle, T. 2003. The roles of auxin response factor domains in auxin-responsive transcription. The Plant Cell 15(2): 533-543.
  37. Tombuloglu, H. 2019. Genome-wide analysis of the auxin response factors (ARF) gene family in barley (Hordeum vulgare). Journal of Plant Biochemistry and Biotechnology 28(1), 14-24.
  38. Valiente-Mullor, C., Beamud, B., Ansari, I., Francés-Cuesta, C., García-González, N., Mejía, L., Ruiz-Hueso, P., González-Candelas, F. 2021. One is not enough: On the effects of reference genome for the mapping and subsequent analyses of short-reads. PLOS Computational Biology 17(1):e1008678. doi: 10.1371/journal.pcbi.1008678. PMID: 33503026; PMCID: PMC7870062.
  39. Varaud E., Brioudes F., Szécsi J., Leroux J., Brown S., Bendahmane M., Varaud E., Brioudes F., Leroux J., Brown S. 2015. Auxin response factor8 regulates Arabidopsispetal growth by interacting with the bHLH transcription factor BIGPETALp. Plant Cell 23:973–983.
  40. Van Ha C., Le D.T., Nishiyama R., Watanabe Y., Sulieman S., Tran U.T., Mochida K., Van Dong N., Yamaguchi-Shinozaki K., Shinozaki K., Tran L.S. The Auxin Response Factor Transcription Factor Family in Soybean: Genome-Wide Identification and Expression Analyses during Development and Water Stress. DNA Research20:511–524.
  41. Voorrips, R. 2002. MapChart: software for the graphical presentation of linkage maps and QTLs. Journal of Heredity 93(1),77-78.
  42. Wang, D., Pei, K., Fu, Y., Sun, Z., Li, S., Liu, H., Tang, K., Han, B. and Tao, Y., 2007. Genome-wide analysis of the auxin response factors (ARF) gene family in rice (Oryza sativa). Gene 394(1-2), 13-24.
  43. Wang, L., Hua, D., He, J., Duan, Y., Chen, Z., Hong, X. and Gong, Z. 2011. Auxin Response Factor2 (ARF2) and its regulated homeodomain gene HB33 mediate abscisic acid response in Arabidopsis. PLoS genetics 7(7), p.e1002172.
  44. Wen, J., Guo, P., Ke, Y., Liu, M., Li, P., Wu, Y., Ran, F., Wang, M., Li, J. and Du, H. 2019. The auxin response factor gene family in allopolyploid Brassica napus. PloS one 14(4), p.e0214885.
  45. Wright, R. C., and Nemhauser, J. L. 2015. New tangles in the auxin signaling web. F1000prime Reports 7, 19.
  46. Xu, Z., Ji, A., Song, J. and Chen, S., 2016. Genome-wide analysis of auxin response factor gene family members in medicinal model plant Salvia miltiorrhiza. Biology Open 5(6), 848-857.
  47. Xia, F., Sun, T., Yang, S., Wang, X., Chao, J., Li, X., Hu, J., Cui, M., Liu, G., Wang, D. and Sun, Y. 2019. Insight into the B3Transcription factor superfamily and expression profiling of B3 genes in axillary buds after topping in tobacco (Nicotiana tabacum ). Genes 10(2),164.
  48. Xing H., Pudake R.N., Guo G., Xing G., Hu Z., Zhang Y., Sun Q., Ni Z. 2011.Genome-Wide Identification and Expression Profiling of Auxin Response Factor (ARF) Gene Family in Maize. BMC Genome 12:1–13. doi: 10.1186/1471-2164-12-178. 
  49. Yu, H., Soler, M., Mila, I., San Clemente, H., Savelli, B., Dunand, C., Paiva, J. A., Myburg, A. A., Bouzayen, M., and Grima-Pettenati, J. 2014. Genome-wide characterization and expression profiling of the Auxin response factor (ARF) gene family in Eucalyptus grandis. PloS one 9, e108906.
  50. Yu, Z., Zhang, F., Friml, J., Ding, Z. 2022. Auxin signaling: research advances over the past 30 years. Journal of Integrative Plant Biology 64, 371–392. doi: 10.1111/jipb.13225.
  51. Zouine, M., Fu, Y., Chateigner-Boutin, A.L., Mila, I., Frasse, P., Wang, H., Audran, C., Roustan, J.P. and Bouzayen, M., 2014. Characterization of the tomato ARF gene family uncovers a multi-level post-transcriptional regulation including alternative splicing. PloS one 9(1), e84203.