Identification of conserved miRNAs and their target genes in the damask rose (Rosa damascena Mill.)

Document Type : Research Paper

Authors

1 Ph.D. Student, Dept. Agriculture and Plant Breeding, Faculty of Agriculture and Natural Resources, University of Tehran, Karaj, I.R. Iran.

2 Assist. Prof., Dept. Agriculture and Plant Breeding, Faculty of Agriculture and Natural Resources, University of Tehran, Karaj, I.R. Iran.

3 Prof., Dept. Agriculture and Plant Breeding, Faculty of Agriculture and Natural Resources, University of Tehran, Karaj, I.R. Iran.

4 Assoc. Prof., Dept. Agriculture and Plant Breeding, School of Agriculture and Natural Resources, University of Tehran, Karaj, I.R. Iran.

5 Assist. Prof., Chemical Industries Development Research Institute, Karaj, I.R. Iran.

10.22092/ijrfpbgr.2023.360701.1428

Abstract

miRNAs genes are regulatory elements that their main role is to downregulate gene expression at the mRNAs level. miRNAs also play important roles in several plant pathways related to important cellular activities such as growth, reproduction, differentiation, morphogenesis, apoptosis and, response to abiotic and biotic stresses. This research was conducted to identify conserved miRNAs and their target genes using next generation sequencing data in the damask rose (Rosa damascena Mill.). Although bioinformatics methods have been developed as the most efficient strategy for target miRNA identification, high-throughput experimental strategies are still in high demand. Bioinformatics tools (Cmii, psRNATarget, WEGO, Blast2GO) and laboratory method (real-time PCR) were used to identify new miRNAs, predict and determine the ontology of the target genes involved in the production of scent and color in the damask rose, respectively. Using EST and RNA-seq data based on Rosa lucieae homology, four miRNA families, including: miR5021, miR2673, miR156, and miR838, were selected as candidate miRNAs. In the next step, for the quantitative evaluation of the real-time PCR to validate the expression level of the selected miR5021 in two samples (white and hot-pink) and the biological stage (young and bud) of the damask rose, foliar spraying with the concentrations of zero (control) and 300 μM of methyl Jasmonate for 48 hours was made. Result showed the highest relative expression of miR5021 belonging to the pink sample on the young development stage. These findings accelerate future prospective studies on the regulatory mechanisms of miRNAs in Rosa damascena.

Keywords

Main Subjects


  • Ahmad, A., Khan, H. A., & Kazmi, M. N. A. 2022. Bloom or not to bloom: Understanding the MiR-156 based regulation of flowering genes in rice (Oryza sativa). Journal of Pure and Applied Agriculture, 7(2), 73-82.
  • Akhtar, G., Jaskani, M. J., Farooq, A., Byrne, D. H., Rajwana, I. A., Sajjad, Y., ... & Awan, F. S. 2019. Genetic plasticity among genotypes of Rosa centifolia and R. damascena from Pakistan, USA and Iran. International Journal of Agriculture and Biology, 21(3), 513-519.
  • Arif, M. A., Top, O., Csicsely, E., Lichtenstern, M., Beheshti, H., Adjabi, K., & Frank, W. 2022. DICER‐LIKE1a autoregulation based on intronic microRNA processing is required for stress adaptation in Physcomitrium patens. The Plant Journal, 109(1), 227-240.
  • Baydar, H., ERBAŞ, S., & Kazaz, S. 2016. Variations in floral characteristics and scent composition and the breeding potential in seed-derived oil-bearing roses (Rosa damascena). Turkish Journal of Agriculture and Forestry, 40(4), 560-569.
  • Bendahmane, M., Dubois, A., Raymond, O., & Bris, M. L. 2013. Genetics and genomics of flower initiation and development in roses. Journal of experimental botany, 64(4), 847-857.
  • Biswas, S., Hazra, S., & Chattopadhyay, S. 2022. Deep sequencing unravels methyl jasmonate responsive novel miRNAs in Podophyllum hexandrum. Journal of Plant Biochemistry and Biotechnology, 31(3), 511-523.
  • Bolger, A. M., Lohse, M., & Usadel, B. 2014. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics, 30(15), 2114-2120.
  • Bonnet, E., Wuyts, J., Rouzé, P., & Van de Peer, Y. 2004. Evidence that microRNA precursors, unlike other non-coding RNAs, have lower folding free energies than random sequences. Bioinformatics, 20(17), 2911-2917.
  • Cai, Y., Yu, X., Hu, S., & Yu, J. 2009. A brief review on the mechanisms of miRNA regulation. Genomics, proteomics & bioinformatics, 7(4), 147-154.
  • Chang, L., & Xia, J. 2023. MicroRNA Regulatory Network Analysis Using miRNet 2.0. In Transcription Factor Regulatory Networks (pp. 185-204). Humana, New York, NY.
  • Dai, X., & Zhao, P. X. 2011. psRNATarget: a plant small RNA target analysis server. Nucleic acids research, 39(suppl_2), W155-W159.
  • de Sena Brandine, G., & Smith, A. D. 2019. Falco: high-speed FastQC emulation for quality control of sequencing data. F1000Research, 8.
  • Devi, K. J., Saha, P., Chakraborty, S., & Rajwanshi, R. 2018. Computational identification and functional annotation of microRNAs and their targets in three species of kiwifruit (Actinidia spp.). Indian Journal of Plant Physiology, 23, 179-191.
  • Fan, R., Li, Y., Li, C., & Zhang, Y. 2015. Differential microRNA analysis of glandular trichomes and young leaves in Xanthium strumarium L. reveals their putative roles in regulating terpenoid biosynthesis. PLoS One, 10(9), e0139002.
  • Fooladvand, Z., & Fazelinasab, B. 2016. Study the genomes expressed in leaf nodes cells of Salvia fruticosa herb to identify important genomic elements. New Cellular and Molecular Biotechnology Journal, 6(23), 77-86.
  • Glagoleva, A. Y., Vikhorev, A. V., Shmakov, N. A., Morozov, S. V., Chernyak, E. I., Vasiliev, G. V., ... & Shoeva, O. Y. 2022. Features of Activity of the Phenylpropanoid Biosynthesis Pathway in Melanin-Accumulating Barley Grains. Frontiers in Plant Science, 13.
  • Ha, M., & Kim, V. N. 2014. Regulation of microRNA biogenesis. Nature reviews Molecular cell biology, 15(8), 509-524.
  • Huang, X., & Madan, A. 1999. CAP3: A DNA sequence assembly program. Genome research, 9(9), 868-877.
  • Karimi, A. A., Naghavi, M. R., Peyghambari, S. A., Sobhani, A., & Rasoulnia, A. 2022. Identification of miRNAs and Their Target Genes in Taraxacum spp. Journal of Agricultural Science and Technology, 24(6), 1457-1471.
  • Karimi, A. A., Naghavi, M., & Nasiri, J. 2018. Identification of miRNAs and their related target genes in Papaver somniferum. Iranian Journal of Field Crop Science, 48(4). (In Persian)
  • Karimi, L., Mansoori, B., Mohammadi, A., Aghapour, M., & Baradaran, B. 2017. Function of microRNA-143 in different signal pathways in cancer: New insights into cancer therapy. Biomedicine & Pharmacotherapy, 91, 121-131. (In Persian)
  • Khosh-Khui, M. 2014. Biotechnology of scented roses: a review. International Journal of Horticultural Science and Technology, 1(1), 1-20.
  • Li, P., Tian, Z., Zhang, Q., Zhang, Y., Wang, M., Fang, X., ... & Cai, X. 2019. MicroRNAome Profile of Euphorbia kansui in Response to Methyl Jasmonate. International journal of molecular sciences, 20(6), 1267.
  • Li, Y., Zhao, H., Wilkins, K., Hughes, C., & Damon, I. K. 2010. Real-time PCR assays for the specific detection of monkeypox virus West African and Congo Basin strain DNA. Journal of virological methods, 169(1), 223-227.
  • Ma, C., Zhou, D., Wang, H., Han, D., Wang, Y., & Yan, X. 2017. Elicitation of Jerusalem artichoke (Helianthus tuberosus) cell suspension culture for enhancement of inulin production and altered degree of polymerisation. Journal of the Science of Food and Agriculture, 97(1), 88-94.
  • Mallory, A. C., & Vaucheret, H. 2006. Functions of microRNAs and related small RNAs in plants. Nature genetics, 38(Suppl 6), S31-S36.
  • Mehta, R., Otgonsuren, M., Younoszai, Z., Allawi, H., Raybuck, B., & Younossi, Z. 2016. Circulating miRNA in patients with non-alcoholic fatty liver disease and coronary artery disease. BMJ open gastroenterology, 3(1), e000096.
  • Modi, A., Purohit, P., Gadwal, A., Ukey, S., Roy, D., Fernandes, S., & Banerjee, M. 2022. In-silico analysis of differentially expressed genes and their regulating microRNA involved in lymph node metastasis in invasive breast carcinoma. Cancer Investigation, 40(1), 55-72.
  • Naghavi, M. R., & Karimi, A. A. 2018. Identification of miRNAs and their target genes in red clover (Trifolium pretense). Iranian Journal of Rangelands and Forests Plant Breeding and Genetic Research, 26(2). (In Persian)
  • Najafabadi, A. S., & Naghavi, M. R. 2018. Mining Ferula gummosa transcriptome to identify miRNAs involved in the regulation and biosynthesis of terpenes. Gene, 645, 41-47. (In Persian)
  • Nouri Jahangirloo, A. M. 2017. Identify and evaluation of miRNA and DXR involved in oil rose (Rosa damascena Mill) treated with gibberellic and jasmonic acid (Doctoral dissertation, University of Zabol). (In Persian)
  • Numnark, S., Mhuantong, W., Ingsriswang, S., & Wichadakul, D. 2012, December. C-mii: a tool for plant miRNA and target identification. In BMC genomics (Vol. 13, No. 7, pp. 1-10). BioMed Central.
  • Nurmohammadi, N., Esmaili, A., Sobhani Najafabadi, A. & Nazarian Firouzabadi, F. 2022. Identification of conserved miRNAs of St. John's wort (Hypericum perforatum) using next-generation sequencing data. Genetic research and improvement of pasture and forest plants of Iran, 30, 72-85. (In Persian)
  • Owusu Adjei, M., Zhou, X., Mao, M., Rafique, F., & Ma, J. 2021. MicroRNAs roles in plants secondary metabolism. Plant Signaling & Behavior, 16(7), 1915590.
  • Park, W., Li, J., Song, R., Messing, J., & Chen, X. 2002. Carpel Factory, a Dicer homolog, and HEN1, a novel protein, act in microRNA metabolism in Arabidopsis thaliana. Current biology, 12(17), 1484-1495.
  • Pfaffl, M. W., Horgan, G. W., & Dempfle, L. 2002. Relative expression software tool (REST©) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic acids research, 30(9), e36-e36.
  • Rasouli, O., Ahmadi, N., & Monfared, S. R. 2020. Molecular characterization and expression pattern of RhPAR, RhMYB1 and RhANS genes involving in scent and color production in Rosa damascena. Scientia Horticulturae, 272, 109399.
  • Rasouli, O., Ahmadi, N., Monfared, S. R., & Sefidkon, F. 2018. Physiological, phytochemicals and molecular analysis of color and scent of different landraces of Rosa damascena during flower development stages. Scientia Horticulturae, 231, 144-150.
  • Sabzehzari, M., & Naghavi, M. R. 2019. Phyto-miRNA: a molecule with beneficial abilities for plant biotechnology. Gene, 683, 28-34. (In Persian)
  • Salimi, Shekari, & Farid. 2012. Effect of methyl jasmonate and salinity stress on some morphological characteristics and flower performance in German chamomile (Matricaria chamomilia ). Iranian Plant Biology, 4(11), 27-38
  • Samad, A. F., Sajad, M., Nazaruddin, N., Fauzi, I. A., Murad, A. M., Zainal, Z., & Ismail, I. 2017. MicroRNA and transcription factor: key players in plant regulatory network. Frontiers in plant science, 8, 565.
  • Samandari-Bahraseman, M. R., Ismaili, A., Esmaeili-Mahani, S., Ebrahimie, E., & Loit, E. 2022. Bunium Persicum Seeds Extract in Combination with Vincristine Mediates Apoptosis in MCF-7 Cells through Regulation of Involved Genes and Proteins Expression. Modern Genetics Scientific Quarterly, 17(3), 273-281. (In Persian).
  • Samavatian, H., Soltani, B. M., Yousefi, F., Jashni, M. K., & Mehrabi, R. 2023. Susceptible and resistant wheat cultivars show different miRNAs expression patterns in response to Zymoseptoria tritici.Journal of Plant Pathology, 1-11
  • Sewe, S. O., Silva, G., Sicat, P., Seal, S. E., & Visendi, P. 2022. Trimming and validation of illumina short reads using Trimmomatic, Trinity assembly, and assessment of RNA-seq data. In Plant Bioinformatics (pp. 211-232). Humana, New York, NY.
  • Shen, J., Deng, Y., Jin, X., Ping, Q., Su, Z., & Li, L. 2010. Thiolated nanostructured lipid carriers as a potential ocular drug delivery system for cyclosporine A: Improving in vivo ocular distribution. International journal of pharmaceutics, 402(1-2), 248-253.
  • Singh, N., Srivastava, S., Shasany, A. K., & Sharma, A. 2016. Identification of miRNAs and their targets involved in the secondary metabolic pathways of Mentha spp. Computational Biology and Chemistry, 64, 154-162.
  • Smith-Unna, R., Boursnell, C., Patro, R., Hibberd, J. M., & Kelly, S. 2016. TransRate: reference-free quality assessment of de novo transcriptome assemblies. Genome research, 26(8), 1134-1144.
  • Tian, T., Wang, J., & Zhou, X. 2015. A review: microRNA detection methods. Organic & biomolecular chemistry, 13(8), 2226-2238.
  • Varkonyi-Gasic, E., Wu, R., Wood, M., Walton, E. F., & Hellens, R. P. 2007. Protocol: a highly sensitive RT-PCR method for detection and quantification of microRNAs. Plant methods, 3(1), 1-12.
  • Wang, J., Lewis, D., Shi, R., McGhie, T., Wang, L., Arathoon, S., ... & Zhang, H. 2022. The colour variations of flowers in wild Paeonia delavayi plants are determined by four classes of plant pigments. New Zealand Journal of Crop and Horticultural Science, 50(1), 69-84.
  • Wang, J., Mei, J., & Ren, G. 2019. Plant microRNAs: biogenesis, homeostasis, and degradation. Frontiers in plant science, 10, 360.
  • Wasternack, C., & Hause, B. 2013. Jasmonates: biosynthesis, perception, signal transduction and action in plant stress response, growth and development. An update to the 2007 review in Annals of Botany.Annals of botany, 111(6), 1021-1058.
  • Wei, R., Qiu, D., Wilson, I. W., Zhao, H., Lu, S., Miao, J., ... & Tang, Q. 2015. Identification of novel and conserved microRNAs in Panax notoginseng roots by high-throughput sequencing. BMC genomics, 16(1), 1-10.
  • Yang, J., Zhang, F., Li, J., Chen, J. P., & Zhang, H. M. 2016. Integrative analysis of the microRNAome and transcriptome illuminates the response of susceptible rice plants to the rice stripe virus. PloS one, 11(1), e0146946.
  • Yang, J., Zhang, N., Ma, C., Qu, Y., Si, H., & Wang, D. 2013. Prediction and verification of microRNAs related to proline accumulation under drought stress in potato. Computational Biology and Chemistry, 46, 48-54.
  • Yuan, J., Chao, Y., & Han, L. 2022. Uncovering a Phenomenon of Active Hormone Transcriptional Regulation during Early Somatic Embryogenesis in Medicago sativa. International journal of molecular sciences, 23(15), 8633.
  • Zhang, B. H., Pan, X. P., Cox, S. B., Cobb, G. P., & Anderson, T. A. 2006. Evidence that miRNAs are different from other RNAs. Cellular and Molecular Life Sciences CMLS, 63, 246-254.
  • Zhang, B., & Wang, Q. 2015. MicroRNA‐based biotechnology for plant improvement. Journal of cellular physiology, 230(1), 1-15.
  • Zhang, G., Wang, H., Zhang, Z., Verstrepen, K. J., Wang, Q., & Dai, Z. 2022. Metabolic engineering of Yarrowia lipolytica for terpenoids production: advances and perspectives. Critical Reviews in Biotechnology, 42(4), 618-633.