Genetic diversity structure of Aegilops crassa accessions revealed by genomic ISSR markers

Authors

1 Asso. Prof., Faculty of Agriculture, Ilam University, Ilam, I.R. Iran

2 Assist. Prof., Faculty of Agriculture, Ilam University, Ilam, I.R. Iran

Abstract

Genetic diversity among 16 accessions of Aegilops crassa was investigated using 10 ISSR primers. Totally, 105 alleles were amplified and 86 alleles (81.90%), were polymorphic. Number of amplified alleles ranged from 6 to 15 with average number of 11 alleles for each primer. Polymorphic information content (PIC) varied from 0.17 (primer UBC 842) to 0.34 (primer ISSR12). Marker index criterion ranged from 0.98 (primer UBC842) to 2.7 (primer ISSR08). Cluster and principal coordinate analysis could not completely separate accessions and showed no association between molecular diversity and geographic diversity of the genotypes, indicating that there is high genetic diversity among the accessions. Mean genetic similarity between microsatellite marker information was 0.89 ranged from 0.76 (between two genotypes from Kermanshah and Tabriz) to 0.96 (between two genotypes of Ilam and Kermanshah). Based on analysis of molecular variance, a larger proportion of genetic variation (53%) belonged to within populations, while a small proportion (47%) observed among the studied populations.

Keywords

Main Subjects


-      Agostini, G., Echeverrigaray, S. and Souza-Chies, T.T., 2008.Genetic relationships among South American species of Cunila D.Royen ex L. based on ISSR. Plant Systematic and Evolution, 274:135-141
-      Ciaffi, M., Lanfiandra, D., Porceddu, E. and Benedettelli, S., 1993. Storage protein variation in wild emmer (Triticum turgidum SSP. Dicoccoides) from Jordan and Turkey.Patterns of allele distribution. Theoretical and Applied Genetics, 86: 518-5250.
-      Eig, A.V., 1929. Monographisch-kritische Ubersicht der GattungAegilops, Verlag des Repertoriums Dahlembei; Berlin.
-      Farkhari, M., Naghavi, M.R., Pyghambari, S.A. and Sabokdast, M., 2007. Genetic variation of Jointed Goatgrass (Aegilops cylindrica Host.) from Iran, using RAPD-PCR and SDS-PAGE of Seed Proteins, Pakistan Journal of Biological Sciences, 10: 2868-2873.
-      Harish, T., Gandhi, M., Isabel, V., Christy, J., Watson, W., Mallory-Smith, C.A., Mori, N., Rehman, M., Robert, S. and Riera-Lizarazu, Z.O., 2005. Chloroplast and nuclear microsatellite analysis of Aegilops cylindrica. Theoretical and Applied Genetics, 111:561.
-      Harish, T., Gandhi, M., Isabel, V., Mallory-Smith, C. and Riera-Lizarazu, O., 2009. Genetic structure of Aegilops cylindrica Host in its native range and in the United States of America., Theoretical and Applied Genetics, 119: 1013.
-      Gajera, B.B., Kumar, K., Singh, A.P., Punvar, B.S., Ravikiran, R., Subhash, N. and G.C, Jadeja., 2010. Assessment of genetic diversity in castor (Ricinus communis L.) using RAPD and ISSR markers. Industrial Crops and Products, 32: 491–498.
-      Karimi, H., 1992.Wheat. 1st ed. Markaz Nashr Daneshgahi, Tehran, Iran.(In Farsi).
-      Kazutoshi, O., Kaoru, E., Bayarsukh, N. and Hisashi, Y., 1998. Genetic diversity of Central Asian and north Caucasian Aegilops species as revealed by RAPD markers., Genetic Resources and Crop Evolution, 45:389.
-      Kharestani, H., 2010. Assessment of genetic diversity and genomic relationships wild and cultivated wheat species possessing a genomic in different ploidy levels using SSR marker, M.Sc. Thesis, IlamUniversity, Iran (In Persian).
-      Kihara, H., Yamashita, K. and Tanaka, M., 1965. Morphological, physiological, geographical and cytological studies in Aegilops and Triticum collected in Pakistan, Afghanistan and, Iran. In Yamashita, K. (Eds), Cultivated Plants and Their Relatives, 1-118.
-      Konstantinos, G., Penelope, T. and Bebeli, J., 2010. Genetic diversity of Greek Aegilops species using different types of nuclear genome markers., Molecular Phylogenetics and Evolution, 56:951.
-      Kumar, S., Tamura, K. and Nei, M., 2004. MEGA3: Integrated software for Molecular Evolutionary Genetics Analysis and sequence alignment, Brief Bioinform, 5:150-63.
-      Lelley, T. ,Satchel, M., Grausgruber, H. and Vollmann ,J., 2000. Analysis of relationships between Aegilopstauschii and the D genome of wheat utilizing microsatellites. Genome, 43:661-668.
-      Najaphy, A., Ashrafi Parchin, R. and E, Farshadfar., 2011. Evaluation of genetic diversity in wheat cultivars and breeding lines using Inter Simple Sequence Repeat markers, Biotechnology & Biotechnological Equipment, 25:2634-2638.
-      Perrier, X. and Jacquemoud-Collet, J.P., 2006. DARwin software, http://darwin.cirad.fr/darwin.
-      Pestsova, E., Korzun, V., Goncharov, N.P., Hammer, K., Ganal, M.W. and Roder, M.S., 2000. Microsatellite analysis of Aegilops tauschii germplasm., Theoretical and Applied Genetics, 101: 100.
-      Plaschke, J., Ganal, M.W. and Roder, M.S., 1995. Detection of genetic diversity in closely related bread wheat using microsatellite markers. Theoretical and Applied Genetics, 91:1001-1007.
-      Reddy, M.P., Sarla, N. and Siddiq, M.E., 2002. Inter simple sequence repeat (ISSR) polymorphism and its application in plant breeding, Euphytica, 128:9–17.
-      Rejesus, M., Van Ginkel, M. and Smale, M., 1996. Wheat breeder perspectives of genetic diversity and germplasm use. Wheat Special Report 4. Mexico D. F. CIMMYT.
-      Singh, S.K., 2003.Cluster analysis for heterosis in wheat (Triticum aestivum L.) Indian Journal of Genetics, 63:249-250.
-      Terzopoulos, P.J. and Bebeli, P.J., 2010. Genetic diversity analysis of Moditerranean faba bean (Vicia faba L.) with ISSR markers. Field Crops Research, 108:39-44.
-      Tanksley, S.D. and McCouch, S.R., 1997. Seed banks and molecular maps: unlocking genetic potential from the wild, Science, 277:1063-1066.
-      Van Slageren, M.W., 1994. Wild wheats: a monograph of Aegilops L. and Amblyopyrum (jaub. and Spach) Eig (poaceae), Agricultural University Wageningen: the Netherland, ICARDA: Aleppo, Syria, 512p.